Application of Data Mining for Prediction of High School Student Graduation Rates
DOI:
https://doi.org/10.59141/jist.v5i11.7047Keywords:
Educational Data Mining, Mean Squared Error, student grades, classification model, feature selectionAbstract
The implementation of Data Mining in the education sector aims to develop methods that are able to discover valuable knowledge from data generated in the educational environment. This can be used to increase learning efficiency by paying more attention to students who are predicted to have low grades. However, in its application, each algorithm shows different performance depending on the attributes and dataset used. In this study, a dataset of semester grades and final school exam scores was used. Some of the prediction techniques used are decision trees, support vector machines, and neural networks. Of the four scenarios for the science major at SMAN 2 and SMAN 3 Pangkalpinang with 3 different models, the Mean Squared Error value shows that the test results are in accordance with the testing dataset and can be used as predictions of students' final grades, namely the decision tree model and support vector machine. For the Social Sciences major at SMAN 2 and SMAN 3 Pangkalpinang with 3 different models, the Mean Squared Error value shows that the test results are in accordance with the testing dataset and can be used as a prediction of students' final grades, namely the support vector machine model.
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhamad Kurniawan, Sani Muhamad Isa
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.