Ekstraksi Informasi Meme-Internet Berbahasa Indonesia Dengan Mesin Pencarian
DOI:
https://doi.org/10.59141/jist.v1i05.56Keywords:
ekstraksi, informasi, SIFT, jaro-winkler, meme-internetAbstract
Citra meme yang ada di internet memiliki informasi yang dapat digali dengan tujuan untuk mendapatkan informasi baru yang diperlukan masyarakat. Ekstraksi Informasi merupakan salah satu ilmu dalam mengenali data teks tidak terstruktur menjadi data teks terstruktur. Dalam penelitian akan melakukan ujicoba dalam mengenali citra latar dan teks yang terkandung di dalam citra. Posisi teks yang hendak dikenali berada pada bagian atas dan bawah citra meme. Algoritma SIFT adalah salah satu metode ekstraksi fitur yang paling banyak digunakan dalam mengenali lokal fitur dari sebuah citra. Penggunaan algoritma SIFT dalam mengenali lokal fitur dari citra diharapkan dapat memberikan informasi yang baik. Sedangkan untuk kemiripan secara tekstual digunakan algoritma Jaro-Winkler distance. Uji coba dalam pra-proses dalam pembentukan database fitur citra dan kata menggunakan 1000 data citra hasil proses crawling dapat dilaksanakan. Praproses terutama untuk tahapan ekstraksi teks yang terdapat pada citra dapat berjalan baik. Pada tahap uji coba temu kembali informasi data citra yang digunakan sebanyak 50 citra. Hasil uji coba temu kembali informasi dengan memanfaatkaan database fitur yang terbentuk dalam penelitian, belum berjalan maksimal karena luaran dari sistem dalam memberikan hasil masih jauh dari hipotesa awal. Prosentase kemiripan citra hasil ujicoba luaran query masih di bawah 50%, terutama di bagian kesesuaian antara teks citra dan citra latar.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Fery Satria Kristianto, Endang Setyati, Reddy Alexandro Harianto
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.