Comparison of Linear Regression and Random Forest Algorithms for Premium Rice Price Prediction (Case Study: West Java)
DOI:
https://doi.org/10.59141/jist.v5i7.1184Keywords:
Premium Rice Prices, Linear Regression, Random ForestAbstract
The staple food commodity that is crucial to the Indonesian society is rice. Rice often experiences fluctuations in prices. These fluctuations can be predicted using machine learning methods. The aim of this research is to evaluate the accuracy of machine learning algorithms in predicting the premium rice prices in the West Java Province, Indonesia. Two methods used in this study are Linear Regression and Random Forest. The dataset used consists of 6096 records from the Indonesian Food Commodity Management Agency. The evaluation results show that the Random Forest algorithm has an accuracy rate of 98.69%, while the Linear Regression algorithm has an accuracy rate of 95.08%. Based on these results, it is concluded that the Random Forest algorithm is more effective in predicting premium rice prices in the West Java Province compared to the Linear Regression algorithm.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Irfan Rasyid Muchtar, Afiyati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International. that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.