Designing a Recommendation System at Yense Restaurants
Jurnal Indonesia Sosial Teknologi, Vol. 5, No. 9, September 2024 5759
Conclusion
The design of a web-based recommendation system application for Yense Restaurant
is a strategic solution in answering the challenge of information overload in the
competitive culinary industry. Using the SDLC Waterfall method, each stage, from needs
analysis to maintenance, is carried out systematically to ensure the system can run
according to its goals. This recommendation system leverages Association Rule Mining-
based algorithms, such as FP-Growth, to analyze buying patterns and generate relevant
menu recommendations. In addition to improving service efficiency, the system is also
designed to support a more personalized customer experience and increase customer
loyalty. With an intuitively designed interface through a UI/UX approach, as well as
responsive frontend and backend integration, the app offers ease of use while supporting
data-driven decision-making. Rigorous functional and usability testing ensures the system
is able to meet user needs, while regular maintenance allows for further development
based on the latest data and trends. With the implementation of this system, Rumah
Makan Yense is expected to increase its competitiveness in the midst of the rapid growth
of the digital-based culinary industry.
Bibliography
Ardianto, A., & Fitrianah, D. (2019). Penerapan Algoritma FP-Growth Rekomendasi
Trend Penjualan ATK Pada CV. Fajar Sukses Abadi. Jurnal Telekomunikasi Dan
Komputer, 9(1), 49. https://doi.org/10.22441/incomtech.v9i1.3263
Dhananjaya, G. M. , Goudar, R. H., Kulkarni, A. A., Rathod, V. N., & Hukkeri, G. S.
(2024). A Digital Recommendation System for Personalized Learning to Enhance
Online Education: A Review. IEEE Access, 12, 34019–34041.
https://doi.org/10.1109/ACCESS.2024.3369901
Gultom, D., Hutabarat, G. S. P., Dirgantara, M., Pratama, R., & Hidayah, A. (2024).
Positive Impact of Digitalization On The Indonesia Economy. Jurnal Konstanta,
3(1). https://doi.org/10.29303/konstanta.v3i1.1078
Hariyati, M., & Heriyanto, H. (2021). Kompetensi Pustakawan di Era Industri 4.0 dalam
Menghadapi Information Overload. Daluang: Journal of Library and Information
Science, 1(1), 1. https://doi.org/10.21580/daluang.v1i1.2021.8005
Fauzy, M., Saleh, K. R., & Asror, I. (2023). A priori algorithm performance analysis using
evaluation parameters on transaction data. Journal of Information and
Communication Technology, 5(2), 123–130.
Ma’ady, M. N. P., Rizaldy, D. D., Satria, R. F., & Anaking, P. (2023). Sparring: Sistem
Rekomendasi Peneliti Terintegrasi Google Scholar via SerpAPI dan Latent Dirichlet
Allocation pada Konteks Perguruan Tinggi. Jurnal Teknologi Dan Manajemen
Informatika, 9(2), 161–171. https://doi.org/10.26905/jtmi.v9i2.11111