

p–ISSN: 2723 - 6609 e-ISSN: 2745-5254

Vol. 4, No. 9 September 2023 http://jist.publikasiindonesia.id/

Doi: 10.59141/jist.v4i9.729 1503

CI/CD IMPLEMENTATION APPLICATION DEPLOYMENT PROCESS

ACADEMIC INFORMATION SYSTEM (CASE STUDY OF PARAMADINA

UNIVERSITY)

Rendy Indriyanto1*, Diki Gita Purnama2*

Paramadina University Jakarta, Indonesia

 Email: rendy.indriyanto@students.paramadina.ac.id1*,

diki.purnama@paramadina.ac.id2*

*Correspondence

ARTICLE INFO ABSTRACT

Accepted : 12-09-2023

Revised : 17-09-2023

Approved : 25-09-2023

This research discusses the implementation of Continuous

Integration/Continuous Delivery (CI/CD) in the deployment process of

the Academic Information System application at Paramadina University,

where the application development process still uses manual methods.

CI/CD is an approach in software development that enables development

teams to automatically integrate code, run tests, and deploy applications

periodically and continuously. The purpose of this research is to

implement CI/CD in the deployment process of Academic Information

System applications so that the development process becomes more

effective and the quality of the resulting application is better and more

adaptable to changes. The method used in this research is the qualitative

method by conducting direct observation to collect data. The results of

the research show that by implementing the stages of CI/CD, the

application deployment process becomes more efficient and can provide

a solution to the problems that arise in the previously conventional or

manual application deployment process. The results of this research can

serve as a guide for development teams and operations who want to adopt

CI/CD in the application deployment process, as well as provide insights

for researchers and practitioners to optimize the use of CI/CD in software

development.

Keywords: information

system; DevOps; ci/cd;

software deployment; academic

application.

Introduction

The development of technology in all aspects encourages universities to take

strategic steps to remain superior in all fields (Aswati, Mulyani, Siagian, & Syah, 2015).

To achieve this goal, one of the steps taken by higher education institutions is to build a

qualified academic information system. The use of academic information systems can

increase the efficiency and effectiveness of academic administration management,

improve the quality of academic administrative services to stakeholders, especially

students, and increase the competitiveness of universities (Yindrizal, 2021).

In conditions where the demand for a system to have high adaptation to changes

that include changes in business processes, changes in infrastructure needs as well as the

addition of features and other additions, it is important to consider how to determine the

application deployment method that must be implemented (Sutarman, Fadli, & Aliim,

2023).

Past software development such as Waterfall methods, Prototyping, Agile, and

RUP, was only discussed when software development was only, there was no topic to

http://jist.publikasiindonesia.id/
https://creativecommons.org/licenses/by-sa/4.0/

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1504

discuss how to deploy and install software in the target infrastructure. Even though

current conditions demand that application development must be complete up to the

deployment and maintenance of software releases (Taryana, Fadli, & Nurshiami, 2020).

The process of making software ready for use by end users, as well as by application

testers and other related parties is referred to as deployment or delivery (Ghimire, 2020).

In the previous development of the Academic Information System, the IT team of

Paramadina University was still carrying out the process of deploying applications

conventionally and had not implemented an automation system. The entire process is

done manually where the source code that has been completed is then uploaded to the

production server (Arachchi & Perera, 2018).

The practice of deploying in this way is certainly simpler and easier to do, but

problems will arise when updates or changes are made on the side of the running

application. When the development team makes direct code changes to the application

that is running on the production server, there will potentially be errors that cause the

application to malfunction. Business process changes to the application will be difficult

for the development team to do. Development in traditional ways often leads to problems

such as application delays and product quality (Laksito, 2022).

Another problem that arises is the difference between the device and environment

used on the development team's side with the server side so that there is a mismatch both

from the operating system version, supporting software, libraries, and software package

dependencies which results in the application cannot function correctly when it has been

deployed to the server (Hadian, Hakim, & Fanani, 2023).

From the problems above, other deployment techniques are needed that can carry

out the process automatically starting from the development, testing, and deployment

stages. For this reason, the author conducted research on the implementation of

Continuous Integration/Continuous Delivery (CI/CD) in the process of developing

Academic Information System applications which are being updated at Paramadina

University.

The implementation of CI/CD is part of DevOps principles and practices. DevOps

is a term for a process that focuses on improving collaboration, communication, and

integration between software developers and IT operations (Chapman, 2014). DevOps

reduces the gap between the development team, operations team, and application users

allowing them to detect problems early (Tohirin, Utami, Widianto, & Al Mauludyansah,

2020).

By implementing CI/CD, it is useful to monitor a project in terms of the speed of

code generation to deployment to a production environment (Achdian & Marwan, 2019).

The application deployment process will be carried out automatically to the staging and

production server bypassing the testing stage by the system. Coding errors will be avoided

because when the development team makes a mistake, the deployment process will

automatically stop and errors that occur will immediately be identified. Continuous

Delivery (CD) provides many benefits for development teams including process

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1505

automation, increased developer productivity, improved coding quality, and faster

distribution to customers.

Research Methods

This research was conducted using a qualitative approach, namely research that

intends to understand the phenomenon of what is experienced by research subjects such

as behavior, perception, motivation, action, etc., holistically, and using description in the

form of words and language, in a special context that is natural and utilizes various natural

methods (Hamid & Prasetyowati, 2021).

The type of research carried out is by observation, which is making direct

observations to collect data about behavior or events in a particular location. The research

was conducted at Paramadina University and began in the early days of the construction

of a new academic information system application, namely in September 2021.

In this study, the author is directly involved and participates in the CI/CD

implementation process, while the process carried out is as follows:

Data Collection.

Data collection was carried out by making observations at the research location,

namely at Paramadina University, and also conducting literature studies from sources that

provide information related to the research theme.

Tahapan Implementasi.

After the data is successfully collected, proceed with the implementation stage of

the CI / CD system by adjusting the use of tools and technology referring to the data

obtained. In general, the CI/CD workflow process has the following basic stages.

Figure 1. CI/CD Workflow

1) Source: At this stage, the development team begins to integrate the source code by

committing and pushing in the local environment to a central repository that has been

connected to the CI/CD pipeline.

2) Build: Pushing to the central repository automatically triggers the next build

processed by the pipeline used. Another process that occurs at this stage is the testing

stage of the code to be deployed.

3) Staging: At this stage, the application deployment process begins. The result of the

process at this stage is that the application can already appear and can be tested on

the functions of the application.

4) Production: This is the final stage of the CI/CD process. At this stage, the application

can already be used by its users.

Tools

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1506

Because this research location uses AWS cloud computing services, most of the

tools used in this study utilize many features and services from AWS. The following are

the tools and technologies used:

a. Laravel Framework

b. VIM text editor

c. SSH remote client

d. Git Version Control System

e. GitHub (https://github.com)

f. AWS CodePipeline

g. AWS CodeDeploy

h. Amazon EC2 Instance

The relationship between the tools used can be illustrated in the diagram below.

Gambar 2. Tools dan komponen CI/CD yang digunakan

Results and Discussion

A. Source

At the initial stage, the author does setup and configuration starting from creating a

repository, adjusting scripts for the auto-deploy application process, creating EC2

instances along with installing the required supporting software.

1) Application repository: The implementation process is carried out by installing a

version control system (Git client) on the developer's side, namely on each work

equipment both laptop and PC used to code applications. After that, a repository is

created using Git Hub so that all team members involved can collaborate. At this

stage, the process of integrating the source code of the application can be done.

2) Script for automating the process of deploying source code: The main script in CI/CD

implementations using AWS CodePipeline and Github is the 'appspec.yml' file. This

script specifies the destination path of the source code files to be deployed, and will

also execute other additional scripts needed in application deployments that use the

Laravel framework. Other additional scripts that will be included in a special

directory and executed during the deployment process include the following:

1. install_dependencies.sh

When this script is run, the system will adjust the web server configuration and

install the PHP composer needed by the Laravel framework.

2. deploy_laravel.sh

https://github.com/

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1507

This script when executed will create several directories including bootstrap/cache,

storage/framework/sessions, storage/framework/view, storage/framework/cache, and

public/cache. Then this script will execute the 'composer install' command in the root

directory of the application so that all the required packages and dependencies are

installed. Other commands performed in this script are database initiation, cache

optimization, changing file permissions, and activating applications.

3. change_permission.sh

As in most web-based applications, files and directories need to be changed

ownership and permissions, so this script will do it.

4. start_server.sh

This script will activate the web server service, in this case, Apache.

5. stop_server.sh

This script will be executed to disable the web server when needed.

All of the above scripts are then pushed to a central repository and merged into the

root directory of the application project.

3) EC2 Instance Installation: For the host server in this study, the authors used an AWS-

provided virtualization service, namely Elastic Compute Cloud (EC2), and used the

Amazon Linux 2 operating system. Here are the manufacturing steps:

a. Log in with your AWS account to the management console and select EC2 services.

b. Select the launch instances button on the EC2 dashboard page.

c. A page will then appear to specify the name of the instance to be created along with

options to specify the type of Amazon Machine Image (AMI) to use, instance type,

security group, network settings, selection of storage media specifications, and other

options tailored to your needs.

d. Once all options are adjusted press the launch instance button. In this phase, an

instance is formed and automatically activated.

Until the above stage, EC2 instances can run and can be used as needed for

application development, but to be integrated with CI / CD there are still steps to be done,

namely by adding configuration and installation of code deploy agents.

Before the code deploy agent can be installed, an IAM role must be added to the

EC2 instance with the following steps:

a. Sign in to the IAM console via https://console.aws.amazon.com/iam/

b. After entering the start page select 'policies' through the navigation panel.

c. Add a new policy by going through the 'create policy' button.

d. On the 'create policy' page select the JSON tab and enter the value as shown below.

https://console.aws.amazon.com/iam/

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1508

Picture 3. Value JSON

1. Select 'next', and 'review policy', then give a name and description for the policy

created.

2. Next, add roles by selecting the 'roles' menu on the navigation panel then select

'create role'.

3. On the 'create role' page, the AWS service to be used is EC2.

4. Make a selection on the policy that was created earlier and also add a policy with the

name Amazon SSM Manage Instance Core.

5. Enter the name of the role that has been created on the review page, then select the

'create role' button.

After completing the addition of roles, the installation of the service code deploy

agent on the EC2 instance can be carried out with the following steps:

1. Access the EC2 instance console via remote SSH.

2. Download the CodeDeploy Agent installer from your Amazon bucket by region.

3. Change the permissions file so that it can be executed, then run the installer.

4. After successfully performing without errors make sure the codedeploy agent service

is running.

Gambar 4. Service codedeploy-agent aktif.

B. Build

At this stage, the pipeline setup is carried out to be used. This pipeline will later be

connected to the application repository that was created in the previous stage.

1) AWS CodeDeploy

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1509

a. Login to the AWS console at

https://console.aws.amazon.com/codesuite/codedeploy/home address

b. As a first step, an application and group deployment are first created which will later

be assigned to the pipeline to be created. Select Deploy > Applications on the panel

menu, then select the 'Create Application' button.

c. Enter the application name on the application name form and select the platform

option used which is EC2/On-premises.

d. After selecting the 'Create Application' button it will then be directed to a page to

create a deployment group of the created application.

e. Select the 'create deployment group' button and enter a name. Then select the service

role that is AWS CodeDeploy, For the deployment setting option select

CodeDeployDefaultAllAtOnce. The load balancer did not need to be selected in this

study.

2) AWS CodePipeline

a. The next step is to create a pipeline, namely by selecting the Pipeline menu on the

navigation pane, and then selecting the Create Pipeline menu, or it can also be

through the wizard provided on the Getting Started page.

b. Name the pipeline to use, choose a name that is relevant to the name of the application

to be built so that it will be easy to distinguish from other pipelines. In this study, the

author named the pipeline "pipeline-dev-and". In this process, it will automatically

establish new service roles needed in the pipeline creation process.

c. In the next step is to determine the source provider used, in this case, it is the central

repository that has previously been created, using the GitHub repository. Connect the

GitHub account you want to use via the Connect to GitHub button.

d. After the account is connected, select the name of the connection that has been

created and navigate to the name of the application repository and the name of the

branch that will be integrated into the staging server. For other options, there is no

need to change it and leave it by default.

e. After clicking the next button on the previous page, the next page will appear to select

the build provider tools to be used. Because this is optional, the author skipped this

stage because for this research applications with the Laravel framework do not

require a build process using a third-party provider.

f. The next process is the deployment stage. That is, choosing the Deploy provider to

use in this case is AWS CodeDeploy. Select a region and then navigate to the name

of the application and deployment group that asŽQOe created before the pipeline

creation stage.

g. After all settings are correct, pipeline creation can be processed by selecting the

Create pipeline button. With the formation of the pipeline, it will automatically

execute the build and test process against the source code connected to the central

repository. The results of the execution will be seen through the event log which

informs that the script and source code deployed through the pipeline is successful

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1510

or failed so that tracing the source of the deployment process failure can be carried

out and then corrections and improvements can be made.

From the series of processes above, will then produce the source code of the

application that has been built and tested through the pipeline. The source code of this

application will then be deployed to staging and production servers.

C. Staging

As a continuation of the build/test stage in the CI/CD workflow, the staging stage

can already be seen as the results of the application source code that has been successfully

deployed in the root directory on the preconfigured web server. However, when access is

made through the public IP server using an internet browser, the application still cannot

be displayed correctly or error, It happens because the source code deployed has not been

set to the .env file which is the main configuration file needed by Laravel framework-

based applications.

For this reason, the author will configure the required .env files and at the same

time demonstrate how adding and changing files in the local repository can automatically

execute the deployment process to the staging server. Here are the steps taken:

1. When you first initiate a Laravel framework-based application project in the local

repository, by default it will generate a.env. example file in the root directory of the

application. This file will be copied into a separate file named env. Before copying

the author first make sure that the .env file name is removed from the. git ignore file

because otherwise by default the .env file will be ignored by the Git system.

2. Change the contents of the .env file, and adjust the endpoint of the database to be

used.

3. After customization, the .env file is saved and then experimented with accessing the

application through a browser. As a result, the application can be displayed as shown

below.

Figure 5. App View in an on-premises environment

4. After the application can run in the local environment, all changes that have been

made are then committed and pushed to the central repository. In the commit process,

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1511

the author gives the message "setup.env" as a message of changes or additions that

have been made before pushing.

5. From the push process above, trigger the CI / CD pipeline that has been formed to

automatically carry out the build/test process and then continue with the deployment

process to the staging environment. Here's what CodePipeline's output looks like a

few moments after the push indicates that the additions or changes made have been

successful or successful.

Figure 6. Pipeline Staging View

6. Results in the staging environment can be directly viewed through an internet

browser with the IP address of the staging server. The image below is a view of the

application that has been successfully deployed and opened through an internet

browser

Figure 7. Application View on Staging Server

From the demonstration above, the application deployment process to the staging

environment carried out through the CI / CD pipeline has been successful and then can

be tested functionally by Quality Assurance (QA) to ensure that the application has

functioned correctly and there are no bugs so that it can then be launched in a production

environment.

D. Production

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1512

At this stage, all changes and additions to the application that have been tested in

the previous stage are integrated into the product that is ready to use. Then the product is

deployed to a production server and ready for end-user use.

For the implementation of the production stage, a separate pipeline is needed and it

is also necessary to create branches or branches in the application's source code

repository. In addition, a server is also needed as a host for the application production

environment.

1) Production Server: As with server staging, for production servers setup and

configuration are carried out starting from the web server, PHP, and its extensions,

as well as libraries and dependencies needed. All use software versions that are

identical to server staging.

2) Git Branch: Git branch is a feature in Git that allows developers to create branches

or versions of existing source code that can be changed and developed separately

from the master branch. With this branch feature, it can be created more than two

versions of the main source code.

Thus, for applications in the production environment, branches will be created and

sourced from the main source code that has previously been integrated into the staging

environment. The following are the steps taken in creating a new branch:

a. Run the git branch command and the branch name that will be used in the root

directory of the application source code. In this case, the new branch is named

"production".

 Figure 8 Create Branch Production

b. To check the branch that has just been created, run the git branch command so that it

produces output as shown below, where there are now two branches, namely main

and production.

Figure 9. Git Branch result view

c. After the new branch is successfully created in the local repository, it will also be

created in the central repository. To do so, first, perform "git checkout" to the new

branch and then run the command "git push origin production".

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1513

Figure 10. Push view to the production branch

d. With this command, a new branch with the name production will be formed on the

side of the central repository. This branch is then connected to the new pipeline which

is then integrated with the production environment.
3) Production Pipeline: The steps are the same as in creating a pipeline for the build

stage, only the pipeline naming is differentiated. In addition, it is necessary to create

additional deployment groups for the integration process into the staging

environment.

a. Re-create the deployment group named "Prod-Asik-Group" in the DevAsik

application. Details of the configuration as shown in the image below.

Figure 11. Production Group Deployment View

Noteworthy is that the environment configuration section specified for the EC2

Instance is a server used to integrate source code in production environments.

b. Then the next step creates a new pipeline with the name "pipeline-prod-and". For

detailed configuration, the author displays in the form of screenshots as below.

Figure 12. Production Pipeline View

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1514

Figure 13. Source Provider Production Display

The source provider uses the same repository as staging, but the branch uses the

name of the production branch.

c. After the pipeline is formed, the deployment process to the production environment

can be immediately seen through the active pipeline page as well as in the staging

environment.

Furthermore, the mechanism of integrating applications from the staging

environment to the production environment can be done simply by merging from the main

branch to the production branch using the branch merging feature available in the Git

tool.

Before doing the git merge process into the production environment, it must be

ensured that the application in the staging environment has no problems or bugs. After

the git branch process to the production branch is carried out, the CI / CD process will

automatically run and the results will be identical to the results in the staging environment.

Conclusion

The process of deploying the source code of academic information system

applications to the production environment is successfully carried out by implementing

the appropriate stages in the CI / CD workflow using available tools and technologies.

Thus, the process of deploying application source code that was previously entirely done

manually can be replaced with a CI / CD system. Although the process of integrating

application source code can be done automatically both in staging environments and in

production environments, there are still processes that require human intervention,

namely setup, and configuration of "env" files in the Laravel framework that still have to

be done manually. CI/CD implementation speeds up the application deployment process,

minimizes the possibility of bugs, and the development team becomes easier to make

updates and changes at any time when needed.

Ci/Cd Implementation Application Deployment Process Academic Information System (Case

Study Of Paramadina University)

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1515

Bibliography

Achdian, Asfin, & Marwan, M. Akbar. (2019). Analysis of CI/CD Application Based on

Cloud Computing Services on Fintech Company. CD Application Based on Cloud

Computing Services on Fintech Company, 4(3), 112–114.

Arachchi, SAIBS, & Perera, Indika. (2018). Continuous integration and continuous

delivery pipeline automation for agile software project management. 2018

Moratuwa Engineering Research Conference (MERCon), 156–161. IEEE.

Aswati, Safrian, Mulyani, Neni, Siagian, Yessica, & Syah, Arridha Zikra. (2015). Peranan

sistem informasi dalam perguruan tinggi. Jurteksi Royal Edisi2.

Chapman, David. (2014). Introduction to DevOps on AWS. Amazon Web Services.

Ghimire, Ramesh. (2020). Deploying Software in the Cloud with CICD Pipelines.

Hadian, Nur, Hakim, Mujibul, & Fanani, M. Rudi. (2023). Implementasi Model Service-

Oriented Architecture (SOA) dalam Perancangan Sistem Informasi UMKM. Jurnal

Teknologi Dan Sistem Informasi Bisnis, 5(3), 311–318.

Hamid, Abdul, & Prasetyowati, M. S. Dr Riris Aishah. (2021). Metodologi Penelitian

Kualitatif, Kuantitatif, Dan Eksperimen. CV Literasi Nusantara Abadi.

Laksito, Arif Dwi. (2022). IMPLEMENTASI CONTINUOUS

INTEGRATION/CONTINUOUS DELIVERY (CI/CD) PADA PERFORMANCE

TESTING DEVOPS. Journal of Information System Management (JOISM), 4(1),

62–66. https://doi.org/10.24076/joism.2022v4i1.887

Sutarman, Muhammad Daniswara, Fadli, Ari, & Aliim, Muhammad Syaiful. (2023).

Perancangan Infrastruktur Devops Sistem Informasi Sentra HKI Lppm Unsoed.

TESLA: Jurnal Teknik Elektro, 25(1), 59–71.

Taryana, Acep, Fadli, Ari, & Nurshiami, Siti Rahmah. (2020). Merancang Perangkat

Lunak Sistem Penjaminan Mutu Internal (SPMI) Perguruan Tinggi yang Memiliki

Daya Adaptasi Terhadap Perubahan Kebutuhan Pengguna secara Cepat dan Sering.

Jurnal Al-Azhar Indonesia Seri Sains Dan Teknologi, 5(3), 121.

Rendy Indriyanto, Diki Gita Purnama

Jurnal Indonesia Sosial Teknologi, Vol. 4, No. 9, September 2023 1516

Tohirin, Tohirin, Utami, Sri Farida, Widianto, Septian Rheno, & Al Mauludyansah,

Widhy. (2020). Implementasi DevOps Pada Pengembangan Aplikasi e-Skrining

Covid-19. JURNAL MULTINETICS, 6(1).

Yindrizal, Yindrizal. (2021). Dampak Penggunaan Sistem Informasi Akademik Untuk

Meningkatkan Kualitas Pelayanan Akademik Mahasiswa Universitas Andalas

Padang. Jurnal Manajemen Publik Dan Kebijakan Publik (JMPKP), 3(1).

