Muhamad Kurniawan, Sani Muhamad Isa
Jurnal Indonesia Sosial Teknologi, Vol. 5, No. 11, November 2024 5502
Aydoğdu, Ş. (2020). Predicting student final performance using artificial neural networks in
online learning environments. Education and Information Technologies, 25(3), 1913–1927.
https://doi.org/10.1007/s10639-019-10053-x
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is
more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis
evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
Courtiol, P., Maussion, C., Moarii, M., Pronier, E., Pilcer, S., Sefta, M., Manceron, P., Toldo, S.,
Zaslavskiy, M., Le Stang, N., Girard, N., Elemento, O., Nicholson, A. G., Blay, J.-Y.,
Galateau-Sallé, F., Wainrib, G., & Clozel, T. (2019). Deep learning-based classification of
mesothelioma improves prediction of patient outcome. Nature Medicine, 25(10), 1519–
1525. https://doi.org/10.1038/s41591-019-0583-3
Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Han, Z., &
Pham, B. T. (2020). Improved landslide assessment using support vector machine with
bagging, boosting, and stacking ensemble machine learning framework in a mountainous
watershed, Japan. Landslides, 17(3), 641–658. https://doi.org/10.1007/s10346-019-01286-
5
Du, X., Yang, J., Hung, J.-L., & Shelton, B. (2020). Educational data mining: a systematic review
of research and emerging trends. Information Discovery and Delivery, 48(4), 225–236.
https://doi.org/10.1108/IDD-09-2019-0070
Fernandes, E., Holanda, M., Victorino, M., Borges, V., Carvalho, R., & Erven, G. Van. (2019).
Educational data mining: Predictive analysis of academic performance of public school
students in the capital of Brazil. Journal of Business Research, 94, 335–343.
https://doi.org/10.1016/j.jbusres.2018.02.012
Kementerian Pendidikan dan Kebudayaan. (2019). Peraturan Menteri Pendidikan dan
Kebudayaan Nomor 43 Tahun 2019 Tentang Penyelenggaraan Ujian yang
Diselenggarakan Satuan Pendidikan dan Ujian Nasional.
Li, L. (2024). Reskilling and Upskilling the Future-ready Workforce for Industry 4.0 and Beyond.
Information Systems Frontiers, 26(5), 1697–1712. https://doi.org/10.1007/s10796-022-
10308-y
Mienye, I. D., Sun, Y., & Wang, Z. (2019). Prediction performance of improved decision tree-
based algorithms: a review. Procedia Manufacturing, 35, 698–703.
https://doi.org/10.1016/j.promfg.2019.06.011
Sharifzadeh, M., Sikinioti-Lock, A., & Shah, N. (2019). Machine-learning methods for integrated
renewable power generation: A comparative study of artificial neural networks, support
vector regression, and Gaussian Process Regression. Renewable and Sustainable Energy
Reviews, 108, 513–538. https://doi.org/10.1016/j.rser.2019.03.040
Wajdi, M. B. N., Iwan Kuswandi, Umar Al Faruq, Zulhijra, Z., Khairudin, K., & Khoiriyah, K.
(2020). Education Policy Overcome Coronavirus, A Study of Indonesians. EDUTEC :
Journal of Education And Technology, 3(2), 96–106. https://doi.org/10.29062/edu.v3i2.42
Xiao, W., Ji, P., & Hu, J. (2022). A survey on educational data mining methods used for predicting
students’ performance. Engineering Reports, 4(5). https://doi.org/10.1002/eng2.12482