

p–ISSN: 2723 - 6609 e-ISSN: 2745-5254

Vol. 6, No. 2 February 2025 http://jist.publikasiindonesia.id/

Indonesia Journal of Social Technology, Vol. 6, No. 2, Februari 2025 833

Shellcode Classification with Machine Learning Based on

Binary Classification

Jaka Naufal Semendawai1*, Deris Stiawan2, Iwan Pahendra3

Universitas Sriwijaya, Indonesia

Email: jaka.semendawai@gmail.com, deris@unsri.ac.id,3iwanpahendra@unsri.ac.id

*Correspondence
 ABSTRACT

Keywords: binary

classification; cyber

security; machine

learning; supervised

machine learning;

hyperparameter tuning

The Internet can link one person to another using their

respective devices. The internet itself has both positive and

negative impacts. One example of the internet's negative

impact is malware that can disrupt or even kill a device or its

users; that is why cyber security is required. Many methods

can be used to prevent or detect malware. One of the efforts

is to use machine learning techniques. The training and

testing dataset for the experiments is derived from the

UNSW_NB15 dataset. K-Nearest Neighbour (KNN),

Decision Tree, and Naïve Bayes classifiers are implemented

to classify whether a record in the testing data is Shellcode

or non-Shellcode attack. The KNN, Decision Tree, and

Naïve Bayes classifiers achieve accuracy levels of 96.82%,

97.08%, and 63.43%, respectively. The results of this

research are expected to provide insight into the use of

machine learning in detecting or classifying malware or

other types of cyber attacks.

Introduction

Awareness of the importance of cyber security in Indonesia is still very low. This

is evidenced by data published by the International Communication Union (ITU), where

the level of cyber security in Indonesia is ranked 70th. This states that Indonesia is very

vulnerable to cyber attacks from hackers in other countries. In addition, according to data

from treat exposure rate (TER), Indonesia has an attack vulnerability rate of malware by

23.54% (Ashari, 2020).

(Patterson et al., 2023) Stated that any organization must think about the essence of

cyber security. This is due to the increasing number of attack cases, which must be able

to be resisted by the knowledge of cyber security because it is already concerned with

data privacy and infrastructure resilience issues. This can be seen from the research

conducted by (Singelton et al., 2021) In 2021, ransomware attacks were used against 10

different types of companies, accounting for an average of 17.4% of the total types of

attacks that occurred in these companies.

http://jist.publikasiindonesia.id/
mailto:jaka.semendawai@gmail.com
mailto:deris@unsri.ac.id
mailto:3iwanpahendra@unsri.ac.id
https://creativecommons.org/licenses/by-sa/4.0/

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 834

One malware currently trending to be used as an attack tool is Shellcode. Using

Shellcodes in cyber attacks has become a trend among hackers. Shellcode can carry out

illegal activities such as DoS attacks, data theft, and automatic system destruction on the

destination computer. (Yang et al., 2022) Shellcode is code designed to perform its tasks

automatically. It can grant an attacker permission to exploit the destination computer

thoroughly. Shellcode is generally produced using assembly.

The basic structure of the Shellcode is as follows: The first is No Operation

Instructions (NOP Sled). NOP sled is used to ensure that the execution does not fail. Then,

Bootstrap Code is used to set up the execution environment. Bootstrap code usually

consists of a value code register used by the payload. Next is payload. The payload used

to perform the main tasks of a hacker depends on the code written in it. The latter is the

clean-up code. Clean-up code removes traces from hackers after attacking the target

system. This can make Shellcode and can provide performance from Shellcode in

executing cleanly. Inside Shellcode, There are several functions referred to as root shell.

It was the most widely used before some further developments. (Anley et al.,

2007)(Niiranen, 2021).

Shellcode is developed with many tools that have their functions. Functions of the

tools used to create Shellcode consist of tools for writing code, compiling code,

converting, testing, and debugging Shellcode. Some of these tools can facilitate the

formation or development of Shellcode. Some tools used to form Shellcode are NASM,

GDB, ObjDump, Ktrace, Strace, and Readelf. NASM is a tool consisting of an assembler,

which is called NASM, and a disassembler, which is called NDISAM (Foster et al.,

2005)(ALHusayn, 2020)Shellcode can download and execute malware automatically

when Hackers successfully enter the destination system. However, the detection of

Shellcode has not been widely developed.

Research from (Akabane et al., 2019) Which develops methods to prevent the

occurrence of activities Shellcode with the results of their research, namely EAF Guard

Driver, which is enough to provide impressive results for prevention Shellcode. The

driver can prevent the Shellcode well without a false alarm rate. Also, the test results

benchmark from EAF Guard Driver increased by 0.02%.

In addition, there is research conducted by (Kanemoto et al., 2019) They use

shellcode emulation, which is based on accuracy and performance values. They aim for a

model to identify critical alerts and automatically provide information about security

breaches. This study's result is the accuracy and performance obtained, which is

approximately 60% remote shellcode Detected.

This research was conducted using machine learning berbasis supervised machine

learning. Similar research was also conducted by (Moon et al., 2022) that uses supervised

machine learning to detect malware. In the research, they used feature hashing because

it can save up to 70% of the memory used and improve malware detection accuracy.

Research conducted by (Rajesh Bingu, 2023) Classification based on binary and

multiclass classification with the help of several machine learning models. The results

Shellcode Classification with Machine Learning Based on Binary Classification

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 835

obtained from the study are based on binary classification, resulting in accuracy values

from 99.17% to 99.65%.

In this study, researchers used several types of machine learning: K-Nearest

Neighbors, Decision Tree, and Naive Bayes. Research conducted by (Gouda et al., 2024)

The decision tree and k-nearest neighbors were used to detect malware, and the data set

was used, UQ-NIDS-V2. Di dalam Data Set There was an attack Shellcode. The study

results show that using the decision tree cannot detect attacks on Shellcode. This can be

seen from the precision, sensitivity, and F1 Score, which is 0%. However, for accuracy

values in detecting all types of malware, which is 98.78%. Then, for the model K-nearest

neighbors, the detection of Shellcode is also not good. This can also be seen from the

precision, sensitivity, and F1 Score, which is 0%. Moreover, accuracy values in type

detection malware are at 98.16%. In addition, research conducted by (Samantaray et al.,

2024) They use different types of machine learning, such as SVM, KNN, LR, DT, NB,

and RF. Then, the model uses an algorithm called MaxAbsScaler. The results of this study

are that the accuracy value obtained in carrying out classification based on multiclass

classification increased from 60% to 94% with the help of engineering MaxAbsScaler.

This research uses machine learning models to introduce an optimized classification

approach for detecting Shellcode attacks. Unlike previous studies focusing solely on

feature extraction or traditional anomaly detection methods, this study integrates

hyperparameter tuning and performance evaluation to identify the most effective

classification model. The use of multiple classification techniques in a comparative

framework enhances the novelty of this study. Given the increasing frequency of

cyberattacks and Indonesia's vulnerability to cybersecurity threats, developing efficient

and reliable detection systems is crucial. The findings of this study can contribute to

strengthening national cybersecurity strategies and protecting digital assets from

malicious intrusions.

In this study, we used machine learning, namely K-nearest neighbors, decision

trees, and naïve Bayes. This is because the three models can be used to perform binary-

based classifications. Then, from the test results using the three models, we will take data

such as accuracy, F1-Score, precision, and recall, which we will then analyze. In the KNN

model, we use various kinds of tests, namely data scaling and hyperparameter tuning, to

evaluate the data that has been improved. In addition, data scaling or hyperparameter

tuning is only used on data, and data scaling or hyperparameter tuning is not used. We

also do this for the decision tree model. Moreover, we also did the naïve Bayes model but

varied the comparison of training and testing data.

This study aims to evaluate the performance of KNN, Decision Tree, and Naïve

Bayes classifiers in detecting Shellcode attacks, analyze the impact of hyperparameter

tuning on classification accuracy, and compare the efficiency of different machine

learning models in identifying cyber threats.

The expected benefits of this study include providing a reference for future research

on machine learning applications in cybersecurity, offering insights into effective

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 836

Shellcode detection techniques for cybersecurity professionals, and supporting the

development of policies and regulations to enhance cybersecurity resilience.

Research Methods

This study uses a qualitative research type with a descriptive approach to analyze

the impact of regulations on the opening of flight routes from and to Kertajati Airport.

This research examines Shellcode attacks using binary classification to see the

performance of classifier KNN, Decision Tree, and Naïve Bayes in detecting attacks on

Shellcode. The data used in this study was taken from the UNSW_NB15 dataset, where

many studies have been conducted on the dataset with the type of attack Shellcode. The

rationale behind using the UNSW-NB15 dataset is that it has up-to-date, logical, and

feature data from each attack that can provide access to analyze each attack technique.

(Moustafa et al., 2018). The steps that will be taken in this study are as follows.

1. Create a new dataset by filtering Shellcode and non-Shellcode attack types from the

UNSW_NB15 dataset.

2. Label the data using labels 0 and 1, where label zero is for non-Shellcode attacks and

label 1 is for Shellcode attack types.

3. Split the data for the training dataset and the test dataset.

4. Test the data using the KNN, Decision Tree, and Naïve Bayes models.

5. Compare the performance of the KNN, Decision Tree, and Naïve Bayes classifiers

regarding non-shellcode attack detection accuracy vs. Shellcode attacks.

6. Analyze the results that have been obtained from the experiment.

Data Preprocessing

 Before we test the data, we first preprocess the data. After we get the CSV file from

the dataset, UNSW_NB15, we select the features using the Exploratory Data Analysis

(EDA) method. Then, once we get the best features of the EDA method, we create a new

CSV file containing the data with the selected features of the EDA method. After that, we

scale the data for multiple tests using the StandardScaler. The results of the previous steps

produce a dataset that is ready to be tested. The graph of the pre-processing data will be

shown in Figure 1 below:

Figure 1. Data Preprocessing Process

Research Flow

In the first step of the research, the author conducted a literature study to find some

previous research that supports this research. Then, several publicly available datasets

were investigated to determine the dataset that best suited the experiment's needs. After

Shellcode Classification with Machine Learning Based on Binary Classification

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 837

careful investigation, the UNSW_NB15 dataset was selected. Some important attributes

of the traffic records in the dataset are then considered features. We use the Exploratory

Data Analysis method to select the best features. Multiple CSV files from a dataset that

have been processed are combined into a single CSV file. For some tests, we scale the

data using the StandardScaler method. In addition, we also use hyperparameter tuning for

each machine learning to get good results from the tests. Data separation for training and

testing purposes uses machine learning libraries available in the Python programming

language. Furthermore, experiments using KNN, Decision Tree, and Naïve Bayes

classifiers were carried out, and the results were further analyzed. The workflow of the

proposed method is illustrated in Figure 2.

Figure 2. Research Flow

Feature Selection from UNSW_NB15 Dataset

The UNSW_NB15 dataset has 49 features. These features have their functions. This

feature was obtained from the results of previous research, where researchers previously

took data using the Tcpdump application to see the traffic that occurred when the

experiment was run. In this study, the author only took a few features suitable for the

experiment to get optimal results and meet the study's objectives. We use Exploratory

Data Analysis (EDA) to get the best features for our research. Table 1 describes the

selected features.

Table 1. Description of Dataset UNSW_NB15 Features

Number Feature Type Description

1. stop Float Record total duration

2. bytes Integer Source to destination transaction bytes

3. bytes Integer Destination to source transaction bytes

4. Sload Float Source bits per second

5. means Integer Mean of the flow packet size transmitted

by the source

6. means Integer Mean of the flow packet size transmitted

by the destination

7. Estimates Timestamp Record start time

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 838

Number Feature Type Description

8. Sintpkt Float TCP connection setup time is between the

SYN and the SYN_ACK packets.

9. label Binary 0 for non-shellcode and 1 for shellcode

records

KNN Classifier

The KNN method classifies based on learning by analogy. The KNN algorithm can

find patterns for the k-nearest value. The value of k is the neighbor k of the value of an

unknown sample. The degree of "proximity" is described in Eudian distance terms.

Eudian distance is the distance between and, which will be written in (3) 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)(Han & Kamber, 1998).

𝑑(𝑋, 𝑌) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1 (1)

Using K-Nearest neighbors for data classification begins with merging raw files

from the dataset. Then, from the raw data, features suitable for the classification process

will be selected using the exploratory data analysis method. Then, the researcher used an

oversampling technique to obtain a balanced dataset. Furthermore, training and testing

data will be separated. In this research, the author uses a ratio variation, namely 90:10,

80:20, 70:30, 60:40, and 50:50, for training and testing data. For classification using

KNN, researchers use the hyperparameter tuning method to get optimal performance.

Then, the data visualization from the KNN model will be displayed as a graph of accuracy

values and the F1-Score of the entire test. After obtaining the classification results in the

form of an F1 score and determining the level of accuracy, the author will analyze and

conclude from the results.

Decision Tree Classifier

Decision Tree Classifier is a process of classifying data by changing the form of

data (tables) into tree models, changing tree models into rules, and simplifying rules

(trimming). A statistical property called information gain is used to determine the best

attributes. Information gain measures how reliable an attribute is in separating training

samples according to their target classification. To determine the exact information gain,

we start by selecting a measure called entropy in information theory, which characterizes

the purity/impurity of a random sample set. (Sarimuddin et al., 2020).

The use of decision trees for data classification begins with the stage of merging

raw files from the datasets used. Then, the raw data will be selected using the Exploratory

Data Analysis method to select features suitable for the classification process. Then, the

researcher used an oversampling technique to obtain a balanced dataset. Furthermore,

training and testing data will be separated. In this research, the author uses a variation of

the ratio, namely 90:10, 80:20, 70:30, 60:40, and 50:50, for training and testing data. The

researcher uses the hyperparameter tuning method in the decision tree model to get more

optimal performance. Then, the authors used the graphviz model to display the decision

tree from the dataset. After the data visualization is carried out as a decision tree, the data

Shellcode Classification with Machine Learning Based on Binary Classification

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 839

visualization from the DT model will be displayed as an accuracy value graph and F1-

Score of the entire test. After obtaining the classification results in the form of an F1

score and determining the level of accuracy, the author will analyze and conclude from

the results.

Naïve Bayes Classifier

Two stages are needed if we use the classifier Naïve Bayes to classify data. First,

make a bag of words, then continue by conducting training. This is done to get a

classification model in the form of probability. Furthermore, to maintain the test results

so they are not damaged, Laplace Smoothing is necessary; up to 0 chance of training can

be avoided. Laplace smoothing Adding the number 1 is divided by the sum of all features

added to all features so that nothing is worth 0. The Naïve Bayes equation used to

determine the class will be written in (4) (Fitriyyah et al., 2019).

𝑉𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗𝑒𝑣𝑃(𝑣𝑗) ∏ 𝑃(𝑎𝑗|𝑣𝑗)𝑛
𝑖=1 (2)

Naïve Bayes for data classification begins with combining raw files from the

datasets used. Then, the raw data will be selected using the Exploratory Data Analysis

method to select features suitable for the classification process. Then, the researcher used

an oversampling technique to obtain a balanced dataset. Furthermore, training and testing

data will be separated. In this research, the author uses a variation of the ratio, namely

90:10, 80:20, 70:30, 60:40, and 50:50, for training and testing data. In the classification

using Naive Bayes, the researcher used Gaussian Naive Bayes. After the classification

process is carried out using naïve Bayes, the results of the F1-Score classification, and

the level of accuracy, the author will analyze and draw conclusions from the results. The

data visualization of these test results will be displayed in a graph of each test's accuracy

value and F1-Score.

Confusion Matrix

The Confusion matrix contains actual values and classification predictions used to

evaluate classifications and predict correct or false objects. (Abdillah, 2015). The

confusion matrix will be shown in Table 2.

Table 2. Confusion Matrix

Classification
Predicted Class

Shellcode Non-shellcode

Shellcode True Positive (TP) False Negative (FN)

Non-shellcode False Positive (FP) True Negative (TN)

Based on the confusion matrix table above, the calculation of the accuracy value

can be done using the formula (3) as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
) ∗ 100% (3).

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 840

Results and Discussion

This research was conducted on a computer with the following specifications: 8 GB

RAM, Intel Core i5-8520U processor, and Windows 10 operating system. The classifier

is implemented on the Google Colaboratory platform. The results of the research will be

presented in the following section.

Research Results

This study uses three binary classifications: KNN, Decision Tree, and Naïve Bayes

(NB).

Classification with K-Nearest Neighbors

The results of the Classification by KNN will be displayed through the following

image:

Figure 2. Accuracy Level of Classification Results with KNN.

Based on the figure above, the K-Nearest Neighbors model performs well in

classifying this data set. This can be seen from several test results using the KNN method.

From the test results that used a training and testing data ratio of 90:10. This test uses the

StandardScaler and Hyperparameter Tuning methods, which results in an accuracy value

of 97.08% and an F1-Score of 97.07%. This value is the best produced by the test using

the ¬K-Nearest Neighbors method. Then, the parameters that provide the best

performance are obtained using hyperparameter tuning, where these parameters are

metric = Euclidean, n_neighbors = 4, and weight = distance. Thus, the maximum

performance of KNN is obtained when using the value K = 4.

Classification with Decision Tree

Then, the decision tree model is a method that produces the best performance in

classifying shellcode attacks. The test that produces the best performance is when

performing hyperparameter tuning. This test compares training and testing data of 90:10,

96,2 96,4 96,6 96,8 97 97,2

90:10

80:20

70:30

60:40

50:50

Hasil Klasifikasi dengan KNN

Accuracy

Shellcode Classification with Machine Learning Based on Binary Classification

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 841

with an accuracy value of 97.22%. Then, the F1-Score value generated by this test is

97.22% for the classification of shellcode attacks. This proves that this model can classify

shellcode attacks. Then, by performing hyperparameter tuning on the decision tree

model, the best parameters produced are criterion: entropy and random state = 42 with

an F1-Score of 97.22%. The following image will display the classification results with

the decision tree.

Figure 3. Accuracy Level of Classification Results with Decision Tree

Classification with Naïve Bayes

The following figure will show the results of the Classification with Naïve Bayes.

Figure 4. Accuracy of Classification Results with Naïve Bayes.

Then the last model used in this study is Naïve Bayes. This model produces

performance that is not as good as the KNN and decision tree models. This can be seen

from the tests that perform best, namely when comparing training and testing data of

50:50. This test also carried out the Hyperparameter Tuning stage, which resulted in an

accuracy value of 63.83%. In addition, the F1-Score resulting from this test is 51.93%.

This proves that this model can classify shellcode attacks and non-shellcode attacks.

However, this model is unreliable in classifying data from shellcode attacks. Then, by

performing hyperparameter tuning on Gaussian Naïve Bayes, the best performance of this

model is achieved, where the parameter is var_smoothing = 101 with an F1-Score of

0.613.

96,6 96,8 97 97,2 97,4

90:10

70:30

50:50

Hasil Klasifikasi dengan Decision

Tree

Accuracy

62,5 63 63,5 64

90:10

70:30

50:50

Hasil Klasifikasi dengan Naive

Bayes

Accuracy

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 842

Discussion

Table 3. Accuracy and F1-Score value from all Machine Learning

Method Variat

ion

Accuracy

(%)

F1-Score

(%)

K-Nearest

Neighbors

90:10 97 97

 80:20 97 97

 70:30 97 97

 60:40 96 97

 50:50 96 98

Decision Tree 90:10 98 97

 80:20 98 97

 70:30 97 97

 60:40 97 97

 50:50 97 97

Naïve Bayes 90:10 77 37

 80:20 78 37

 70:30 77 37

 60:40 77 39

 50:50 77 39

Source: Data processed

Table 3 above shows that the K-Nearest Neighbor and Decision Tree classification

results have the best performance. However, the overall performance of the KNN

classifier in the Shellcode attack classification is not good enough. This is due to the

characteristics of the KNN classifier, which is resistant (robust) to extreme data changes

(outlier) where the data used for testing has significant changes. However, this

classification is not optimal for sizable data even though it resists significant changes.

This is because if the data change is too substantial, then this change will be a weakness

for this classifier. So, there is a limit to the data change in the KNN classifier. As for the

Decision Tree classifier, it also performs relatively well in Shellcode classification. This

good achievement is also influenced by the advantages of the Decision Tree model, which

is not sensitive to significant changes in data (outliers). In addition, the Decision Tree

model also has a pretty good accuracy value in classifying and predicting data. The Naïve

Bayes CLassifier also performed well in classifying and predicting during test

experiments. However, this classifier is not good enough in classifying Shellcode attacks;

it is not even recommended. This is due to the characteristics of classifiers that have

limited performance for complex data. In addition, this model is also quite sensitive to

the features used. Overall, the visualization of the classification data used in the test shows

Shellcode Classification with Machine Learning Based on Binary Classification

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 843

that all three machine learning-based classifiers perform relatively well in detecting

positive data compared to harmful data.

Conclusion

This study analyzes the classification of Shellcode with machine learning based on

binary classification, namely KNN, Decision Tree, and Naïve Bayes. Overall, all three

classifiers performed well in classifying Shellcode attacks. The Decision Tree classifier

achieved the best accuracy level of 97.21%. However, the accuracy of the KNN and Naive

Bayes methods also showed results that did not disappoint. This indicates that binary

classification-based classification can classify Shellcode attacks taken from the

UNSW_NB15 dataset. The results of this study are expected to provide insights into the

use of machine learning in detecting or classifying malware or other types of cyberattacks.

Further research can explore preprocessing and/or classification methods with multiclass

classification to detect and classify types of cyber attacks, especially Shellcode Attacks.

In addition, the types of attacks can be more varied and not limited to the datasets used in

this study.

Bibliography

Abdillah, S. (2015). Penerapan Algoritma Decision Tree C4.5 Untuk Diagnosa Penyakit

Stroke Dengan Klasifikasi Data Mining Pada Rumah Sakit Santra Maria Pemalang.

Jurnal Teknik Informatika, 1–12.

Akabane, S., Miwa, T., & Okamoto, T. (2019). An EAF guard driver to prevent shellcode

from removing guard pages. Procedia Computer Science, 159, 2432–2439.

https://doi.org/10.1016/j.procs.2019.09.418

ALHusayn, S. M. S. (2020). The Buffer Overflow Attack and How to Solve Buffer

Overflow in Recent Research. AJRSP Journal, 2(19), 1–13.

Anley, C., Heasman, J., Linder, F., & Richarte, G. (2007). The Shellcoder’s Handbook:

Discovering and Exploiting Security Holes, 2nd Edition.

Ashari, M. (2020). Keamanan Informasi: Sudah Saatnya Kita Peduli. DJKN Kemenkeu.

Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon

Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive

Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(3), 279.

https://doi.org/10.26418/jp.v5i3.34368

Foster, J. C., Osipov, V., Bhalla, N., Heinen, N., & Aitel, D. (2005). Buffer overflow

attacks: Detect, exploit, prevent. In Buffer Overflow Attacks: Detect, Exploit,

Prevent. https://doi.org/10.1016/B978-1-932266-67-2.X5031-2

Gouda, H. A., Ahmed, M. A., & Roushdy, M. I. (2024). Optimizing anomaly-based attack

detection using classification machine learning. Neural Computing and

Applications, 36(6), 3239–3257. https://doi.org/10.1007/s00521-023-09309-y

Han, J., & Kamber, M. (1998). Data Mining: Concepts and Techniques. In Morgan

Kaufmann Publisher. https://doi.org/10.3726/978-3-653-01927-8/2

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025 844

Kanemoto, Y., Aoki, K., Iwamura, M., Miyoshi, J., Kotani, D., Takakura, H., & Okabe,

Y. (2019). Detecting successful attacks from IDS alerts based on emulation of

remote shellcodes. Proceedings - International Computer Software and Applications

Conference, 2, 471–476. https://doi.org/10.1109/COMPSAC.2019.10251

Moon, D., Lee, J. K., & Yoon, M. K. (2022). Compact feature hashing for machine

learning-based malware detection. ICT Express, 8(1), 124–129.

https://doi.org/10.1016/j.icte.2021.08.005

Moustafa, N., Adi, E., Turnbull, B., & Hu, J. (2018). A New Threat Intelligence Scheme

for Safeguarding Industry 4.0 Systems. IEEE Access, 6, 32910–32924.

https://doi.org/10.1109/ACCESS.2018.2844794

Niiranen, A. (2021). Machine learning-based ISA detection for short shellcodes.

Patterson, C. M., Nurse, J. R. C., & Franqueira, V. N. L. (2023). Learning from cyber

security incidents: A systematic review and future research agenda. Computers and

Security, 132. https://doi.org/10.1016/j.cose.2023.103309

Rajesh Bingu, E. al. (2023). Performance Comparison Analysis of Classification

Methodologies for Effective Detection of Intrusions. International Journal on

Recent and Innovation Trends in Computing and Communication, 11(9), 2860–

2879. https://doi.org/10.17762/ijritcc.v11i9.9375

Samantaray, M., Barik, R. C., & Biswal, A. K. (2024). A comparative assessment of

machine learning algorithms in the IoT-based network intrusion detection systems.

Decision Analytics Journal, 11(May), 100478.

https://doi.org/10.1016/j.dajour.2024.100478

Sarimuddin, S., Sari, J. Y., Mail, M., Masalu, M. A., Aristika, R. S., & Nurfagra, N.

(2020). Klasifikasi Data Aging Tunggakan Nasabah Menggunakan Metode Decision

Tree Pada ULaMM Unit Kolaka. INFORMAL: Informatics Journal, 5(1), 26.

https://doi.org/10.19184/isj.v5i1.16964

Singelton, C., Wikoff, A., & McMillen, D. (2021). IBM: 2021 X-Force Threat

Intelligence Index. Network Security, 36. https://doi.org/10.1016/s1353-

4858(21)00026-x

Yang, G., Chen, X., Zhou, Y., & Yu, C. (2022). DualSC: Automatic Generation and

Summarization of Shellcode via Transformer and Dual Learning. Proceedings -

2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering, SANER 2022, 361–372.

https://doi.org/10.1109/SANER53432.2022.00052

