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The Internet can link one person to another using their 

respective devices. The internet itself has both positive and 

negative impacts. One example of the internet's negative 

impact is malware that can disrupt or even kill a device or its 

users; that is why cyber security is required. Many methods 

can be used to prevent or detect malware. One of the efforts 

is to use machine learning techniques. The training and 

testing dataset for the experiments is derived from the 

UNSW_NB15 dataset. K-Nearest Neighbour (KNN), 

Decision Tree, and Naïve Bayes classifiers are implemented 

to classify whether a record in the testing data is Shellcode 

or non-Shellcode attack. The KNN, Decision Tree, and 

Naïve Bayes classifiers achieve accuracy levels of 96.82%, 

97.08%, and 63.43%, respectively. The results of this 

research are expected to provide insight into the use of 

machine learning in detecting or classifying malware or 

other types of cyber attacks. 

 

 
 

 

Introduction  

Awareness of the importance of cyber security in Indonesia is still very low. This 

is evidenced by data published by the International Communication Union (ITU), where 

the level of cyber security in Indonesia is ranked 70th. This states that Indonesia is very 

vulnerable to cyber attacks from hackers in other countries. In addition, according to data 

from treat exposure rate (TER), Indonesia has an attack vulnerability rate of malware by 

23.54% (Ashari, 2020). 

(Patterson et al., 2023) Stated that any organization must think about the essence of 

cyber security. This is due to the increasing number of attack cases, which must be able 

to be resisted by the knowledge of cyber security because it is already concerned with 

data privacy and infrastructure resilience issues. This can be seen from the research 

conducted by (Singelton et al., 2021) In 2021, ransomware attacks were used against 10 

different types of companies, accounting for an average of 17.4% of the total types of 

attacks that occurred in these companies. 
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One malware currently trending to be used as an attack tool is Shellcode. Using 

Shellcodes in cyber attacks has become a trend among hackers. Shellcode can carry out 

illegal activities such as DoS attacks, data theft, and automatic system destruction on the 

destination computer. (Yang et al., 2022) Shellcode is code designed to perform its tasks 

automatically. It can grant an attacker permission to exploit the destination computer 

thoroughly. Shellcode is generally produced using assembly. 

The basic structure of the Shellcode is as follows: The first is No Operation 

Instructions (NOP Sled). NOP sled is used to ensure that the execution does not fail. Then, 

Bootstrap Code is used to set up the execution environment. Bootstrap code usually 

consists of a value code register used by the payload. Next is payload. The payload used 

to perform the main tasks of a hacker depends on the code written in it. The latter is the 

clean-up code. Clean-up code removes traces from hackers after attacking the target 

system. This can make Shellcode and can provide performance from Shellcode in 

executing cleanly. Inside Shellcode, There are several functions referred to as root shell. 

It was the most widely used before some further developments. (Anley et al., 

2007)(Niiranen, 2021). 

Shellcode is developed with many tools that have their functions. Functions of the 

tools used to create Shellcode consist of tools for writing code, compiling code, 

converting, testing, and debugging Shellcode. Some of these tools can facilitate the 

formation or development of Shellcode. Some tools used to form Shellcode are NASM, 

GDB, ObjDump, Ktrace, Strace, and Readelf. NASM is a tool consisting of an assembler, 

which is called NASM, and a disassembler, which is called NDISAM (Foster et al., 

2005)(ALHusayn, 2020)Shellcode can download and execute malware automatically 

when Hackers successfully enter the destination system. However, the detection of 

Shellcode has not been widely developed. 

Research from (Akabane et al., 2019) Which develops methods to prevent the 

occurrence of activities Shellcode with the results of their research, namely EAF Guard 

Driver, which is enough to provide impressive results for prevention Shellcode. The 

driver can prevent the Shellcode well without a false alarm rate. Also, the test results 

benchmark from EAF Guard Driver increased by 0.02%. 

In addition, there is research conducted by (Kanemoto et al., 2019) They use 

shellcode emulation, which is based on accuracy and performance values. They aim for a 

model to identify critical alerts and automatically provide information about security 

breaches. This study's result is the accuracy and performance obtained, which is 

approximately 60% remote shellcode Detected. 

This research was conducted using machine learning berbasis supervised machine 

learning. Similar research was also conducted by (Moon et al., 2022) that uses supervised 

machine learning to detect malware. In the research, they used feature hashing because 

it can save up to 70% of the memory used and improve malware detection accuracy. 

Research conducted by (Rajesh Bingu, 2023) Classification based on binary and 

multiclass classification with the help of several machine learning models. The results 
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obtained from the study are based on binary classification, resulting in accuracy values 

from 99.17% to 99.65%. 

In this study, researchers used several types of machine learning: K-Nearest 

Neighbors, Decision Tree, and Naive Bayes. Research conducted by (Gouda et al., 2024) 

The decision tree and k-nearest neighbors were used to detect malware, and the data set 

was used, UQ-NIDS-V2. Di dalam Data Set There was an attack Shellcode. The study 

results show that using the decision tree cannot detect attacks on Shellcode. This can be 

seen from the precision, sensitivity, and F1 Score, which is 0%. However, for accuracy 

values in detecting all types of malware, which is 98.78%. Then, for the model K-nearest 

neighbors, the detection of Shellcode is also not good. This can also be seen from the 

precision, sensitivity, and F1 Score, which is 0%. Moreover, accuracy values in type 

detection malware are at 98.16%. In addition, research conducted by (Samantaray et al., 

2024) They use different types of machine learning, such as SVM, KNN, LR, DT, NB, 

and RF. Then, the model uses an algorithm called MaxAbsScaler. The results of this study 

are that the accuracy value obtained in carrying out classification based on multiclass 

classification increased from 60% to 94% with the help of engineering MaxAbsScaler. 

This research uses machine learning models to introduce an optimized classification 

approach for detecting Shellcode attacks. Unlike previous studies focusing solely on 

feature extraction or traditional anomaly detection methods, this study integrates 

hyperparameter tuning and performance evaluation to identify the most effective 

classification model. The use of multiple classification techniques in a comparative 

framework enhances the novelty of this study. Given the increasing frequency of 

cyberattacks and Indonesia's vulnerability to cybersecurity threats, developing efficient 

and reliable detection systems is crucial. The findings of this study can contribute to 

strengthening national cybersecurity strategies and protecting digital assets from 

malicious intrusions. 

In this study, we used machine learning, namely K-nearest neighbors, decision 

trees, and naïve Bayes. This is because the three models can be used to perform binary-

based classifications. Then, from the test results using the three models, we will take data 

such as accuracy, F1-Score, precision, and recall, which we will then analyze. In the KNN 

model, we use various kinds of tests, namely data scaling and hyperparameter tuning, to 

evaluate the data that has been improved. In addition, data scaling or hyperparameter 

tuning is only used on data, and data scaling or hyperparameter tuning is not used. We 

also do this for the decision tree model. Moreover, we also did the naïve Bayes model but 

varied the comparison of training and testing data. 

This study aims to evaluate the performance of KNN, Decision Tree, and Naïve 

Bayes classifiers in detecting Shellcode attacks, analyze the impact of hyperparameter 

tuning on classification accuracy, and compare the efficiency of different machine 

learning models in identifying cyber threats. 

The expected benefits of this study include providing a reference for future research 

on machine learning applications in cybersecurity, offering insights into effective 
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Shellcode detection techniques for cybersecurity professionals, and supporting the 

development of policies and regulations to enhance cybersecurity resilience. 

 

Research Methods  

This study uses a qualitative research type with a descriptive approach to analyze 

the impact of regulations on the opening of flight routes from and to Kertajati Airport. 

This research examines Shellcode attacks using binary classification to see the 

performance of classifier KNN, Decision Tree, and Naïve Bayes in detecting attacks on 

Shellcode. The data used in this study was taken from the UNSW_NB15 dataset, where 

many studies have been conducted on the dataset with the type of attack Shellcode. The 

rationale behind using the UNSW-NB15 dataset is that it has up-to-date, logical, and 

feature data from each attack that can provide access to analyze each attack technique. 

(Moustafa et al., 2018).  The steps that will be taken in this study are as follows. 

1. Create a new dataset by filtering Shellcode and non-Shellcode attack types from the 

UNSW_NB15 dataset. 

2. Label the data using labels 0 and 1, where label zero is for non-Shellcode attacks and 

label 1 is for Shellcode attack types. 

3. Split the data for the training dataset and the test dataset. 

4. Test the data using the KNN, Decision Tree, and Naïve Bayes models. 

5. Compare the performance of the KNN, Decision Tree, and Naïve Bayes classifiers 

regarding non-shellcode attack detection accuracy vs. Shellcode attacks. 

6. Analyze the results that have been obtained from the experiment. 

Data Preprocessing 

 Before we test the data, we first preprocess the data. After we get the CSV file from 

the dataset, UNSW_NB15, we select the features using the Exploratory Data Analysis 

(EDA) method. Then, once we get the best features of the EDA method, we create a new 

CSV file containing the data with the selected features of the EDA method. After that, we 

scale the data for multiple tests using the StandardScaler. The results of the previous steps 

produce a dataset that is ready to be tested. The graph of the pre-processing data will be 

shown in Figure 1 below: 

 

 

 

 

 

 

Figure 1. Data Preprocessing Process 

 

Research Flow 

In the first step of the research, the author conducted a literature study to find some 

previous research that supports this research. Then, several publicly available datasets 

were investigated to determine the dataset that best suited the experiment's needs. After 
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careful investigation, the UNSW_NB15 dataset was selected. Some important attributes 

of the traffic records in the dataset are then considered features. We use the Exploratory 

Data Analysis method to select the best features. Multiple CSV files from a dataset that 

have been processed are combined into a single CSV file. For some tests, we scale the 

data using the StandardScaler method. In addition, we also use hyperparameter tuning for 

each machine learning to get good results from the tests. Data separation for training and 

testing purposes uses machine learning libraries available in the Python programming 

language. Furthermore, experiments using KNN, Decision Tree, and Naïve Bayes 

classifiers were carried out, and the results were further analyzed. The workflow of the 

proposed method is illustrated in Figure 2.  

 
Figure 2. Research Flow 

 

Feature Selection from UNSW_NB15 Dataset 

The UNSW_NB15 dataset has 49 features. These features have their functions. This 

feature was obtained from the results of previous research, where researchers previously 

took data using the Tcpdump application to see the traffic that occurred when the 

experiment was run. In this study, the author only took a few features suitable for the 

experiment to get optimal results and meet the study's objectives. We use Exploratory 

Data Analysis (EDA) to get the best features for our research. Table 1 describes the 

selected features. 

 

Table 1. Description of Dataset UNSW_NB15 Features 

Number Feature Type Description 

1. stop Float Record total duration 

2. bytes Integer Source to destination transaction bytes 

3. bytes Integer Destination to source transaction bytes 

4. Sload Float Source bits per second 

5. means Integer Mean of the flow packet size transmitted 

by the source 

6. means Integer Mean of the flow packet size transmitted 

by the destination 

7. Estimates Timestamp Record start time 
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Number Feature Type Description 

8. Sintpkt Float TCP connection setup time is between the 

SYN and the SYN_ACK packets. 

9. label Binary 0 for non-shellcode and 1 for shellcode 

records 

 

KNN Classifier 

The KNN method classifies based on learning by analogy. The KNN algorithm can 

find patterns for the k-nearest value. The value of k is the neighbor k of the value of an 

unknown sample. The degree of "proximity" is described in Eudian distance terms. 

Eudian distance is the distance between and, which will be written in (3) 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛)𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛)(Han & Kamber, 1998). 

𝑑(𝑋, 𝑌) =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    (1)  

Using K-Nearest neighbors for data classification begins with merging raw files 

from the dataset. Then, from the raw data, features suitable for the classification process 

will be selected using the exploratory data analysis method. Then, the researcher used an 

oversampling technique to obtain a balanced dataset. Furthermore, training and testing 

data will be separated. In this research, the author uses a ratio variation, namely 90:10, 

80:20, 70:30, 60:40, and 50:50, for training and testing data. For classification using 

KNN, researchers use the hyperparameter tuning method to get optimal performance. 

Then, the data visualization from the KNN model will be displayed as a graph of accuracy 

values and the F1-Score of the entire test. After obtaining the classification results in the 

form of an F1 score and determining the level of accuracy, the author will analyze and 

conclude from the results. 

 

Decision Tree Classifier  

Decision Tree Classifier is a process of classifying data by changing the form of 

data (tables) into tree models, changing tree models into rules, and simplifying rules 

(trimming). A statistical property called information gain is used to determine the best 

attributes. Information gain measures how reliable an attribute is in separating training 

samples according to their target classification. To determine the exact information gain, 

we start by selecting a measure called entropy in information theory, which characterizes 

the purity/impurity of a random sample set. (Sarimuddin et al., 2020). 

The use of decision trees for data classification begins with the stage of merging 

raw files from the datasets used. Then, the raw data will be selected using the Exploratory 

Data Analysis method to select features suitable for the classification process. Then, the 

researcher used an oversampling technique to obtain a balanced dataset. Furthermore, 

training and testing data will be separated. In this research, the author uses a variation of 

the ratio, namely 90:10, 80:20, 70:30, 60:40, and 50:50, for training and testing data. The 

researcher uses the hyperparameter tuning method in the decision tree model to get more 

optimal performance. Then, the authors used the graphviz model to display the decision 

tree from the dataset. After the data visualization is carried out as a decision tree, the data 
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visualization from the DT model will be displayed as an accuracy value graph and F1-

Score of the entire test. After obtaining the classification results in the form of an F1 

score and determining the level of accuracy, the author will analyze and conclude from 

the results. 

 

Naïve Bayes Classifier  

Two stages are needed if we use the classifier Naïve Bayes to classify data. First, 

make a bag of words, then continue by conducting training. This is done to get a 

classification model in the form of probability. Furthermore, to maintain the test results 

so they are not damaged, Laplace Smoothing is necessary; up to 0 chance of training can 

be avoided. Laplace smoothing Adding the number 1 is divided by the sum of all features 

added to all features so that nothing is worth 0. The Naïve Bayes equation used to 

determine the class will be written in (4) (Fitriyyah et al., 2019). 

 

𝑉𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑗𝑒𝑣𝑃(𝑣𝑗) ∏ 𝑃(𝑎𝑗|𝑣𝑗)𝑛
𝑖=1   (2) 

 

Naïve Bayes for data classification begins with combining raw files from the 

datasets used. Then, the raw data will be selected using the Exploratory Data Analysis 

method to select features suitable for the classification process. Then, the researcher used 

an oversampling technique to obtain a balanced dataset. Furthermore, training and testing 

data will be separated. In this research, the author uses a variation of the ratio, namely 

90:10, 80:20, 70:30, 60:40, and 50:50, for training and testing data. In the classification 

using Naive Bayes, the researcher used Gaussian Naive Bayes. After the classification 

process is carried out using naïve Bayes, the results of the F1-Score classification, and 

the level of accuracy, the author will analyze and draw conclusions from the results. The 

data visualization of these test results will be displayed in a graph of each test's accuracy 

value and F1-Score. 

 

Confusion Matrix 

The Confusion matrix contains actual values and classification predictions used to 

evaluate classifications and predict correct or false objects. (Abdillah, 2015). The 

confusion matrix will be shown in Table 2. 

Table 2. Confusion Matrix 

Classification 
Predicted Class 

Shellcode Non-shellcode 

Shellcode True Positive (TP) False Negative (FN) 

Non-shellcode False Positive (FP) True Negative (TN) 

 

Based on the confusion matrix table above, the calculation of the accuracy value 

can be done using the formula (3) as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
) ∗ 100%  (3). 
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Results and Discussion  

This research was conducted on a computer with the following specifications: 8 GB 

RAM, Intel Core i5-8520U processor, and Windows 10 operating system. The classifier 

is implemented on the Google Colaboratory platform. The results of the research will be 

presented in the following section. 

 

Research Results 

This study uses three binary classifications: KNN, Decision Tree, and Naïve Bayes 

(NB).  

Classification with K-Nearest Neighbors  

The results of the Classification by KNN will be displayed through the following 

image: 

 

 
Figure 2. Accuracy Level of Classification Results with KNN. 

 

Based on the figure above, the K-Nearest Neighbors model performs well in 

classifying this data set. This can be seen from several test results using the KNN method. 

From the test results that used a training and testing data ratio of 90:10. This test uses the 

StandardScaler and Hyperparameter Tuning methods, which results in an accuracy value 

of 97.08% and an F1-Score of 97.07%. This value is the best produced by the test using 

the ¬K-Nearest Neighbors method. Then, the parameters that provide the best 

performance are obtained using hyperparameter tuning, where these parameters are 

metric = Euclidean, n_neighbors = 4, and weight = distance. Thus, the maximum 

performance of KNN is obtained when using the value K = 4. 

 

Classification with Decision Tree 

Then, the decision tree model is a method that produces the best performance in 

classifying shellcode attacks. The test that produces the best performance is when 

performing hyperparameter tuning. This test compares training and testing data of 90:10, 

96,2 96,4 96,6 96,8 97 97,2

90:10

80:20

70:30

60:40

50:50

Hasil Klasifikasi dengan KNN

Accuracy
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with an accuracy value of 97.22%. Then, the F1-Score value generated by this test is 

97.22% for the classification of shellcode attacks. This proves that this model can classify 

shellcode attacks. Then, by performing hyperparameter tuning on the decision tree 

model, the best parameters produced are criterion: entropy and random state = 42 with 

an F1-Score of 97.22%. The following image will display the classification results with 

the decision tree. 

 

 
Figure 3. Accuracy Level of Classification Results with Decision Tree 

 

Classification with Naïve Bayes 

The following figure will show the results of the Classification with Naïve Bayes. 

 

 
Figure 4. Accuracy of Classification Results with Naïve Bayes. 

 

Then the last model used in this study is Naïve Bayes. This model produces 

performance that is not as good as the KNN and decision tree models. This can be seen 

from the tests that perform best, namely when comparing training and testing data of 

50:50. This test also carried out the Hyperparameter Tuning stage, which resulted in an 

accuracy value of 63.83%. In addition, the F1-Score resulting from this test is 51.93%. 

This proves that this model can classify shellcode attacks and non-shellcode attacks. 

However, this model is unreliable in classifying data from shellcode attacks. Then, by 

performing hyperparameter tuning on Gaussian Naïve Bayes, the best performance of this 

model is achieved, where the parameter is var_smoothing = 101 with an F1-Score of 

0.613. 

 

96,6 96,8 97 97,2 97,4

90:10

70:30

50:50

Hasil Klasifikasi dengan Decision 

Tree

Accuracy

62,5 63 63,5 64

90:10

70:30

50:50
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Bayes

Accuracy
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Discussion 

Table 3. Accuracy and F1-Score value from all Machine Learning 

Method Variat

ion 

Accuracy 

(%) 

F1-Score 

(%) 

K-Nearest 

Neighbors 

90:10 97 97 

 80:20 97 97 

 70:30 97 97 

 60:40 96 97 

 50:50 96 98 

    

Decision Tree 90:10 98 97 

 80:20 98 97 

 70:30 97 97 

 60:40 97 97 

 50:50 97 97 

 

Naïve Bayes 90:10 77 37 

 80:20 78 37 

 70:30 77 37 

 60:40 77 39 

 50:50 77 39 

 

Source: Data processed 

 

Table 3 above shows that the K-Nearest Neighbor and Decision Tree classification 

results have the best performance. However, the overall performance of the KNN 

classifier in the Shellcode attack classification is not good enough. This is due to the 

characteristics of the KNN classifier, which is resistant (robust) to extreme data changes 

(outlier) where the data used for testing has significant changes. However, this 

classification is not optimal for sizable data even though it resists significant changes. 

This is because if the data change is too substantial, then this change will be a weakness 

for this classifier. So, there is a limit to the data change in the  KNN classifier. As for the 

Decision Tree classifier, it also performs relatively well in Shellcode classification. This 

good achievement is also influenced by the advantages of the Decision Tree model, which 

is not sensitive to significant changes in data (outliers). In addition, the Decision Tree 

model also has a pretty good accuracy value in classifying and predicting data. The Naïve 

Bayes CLassifier also performed well in classifying and predicting during test 

experiments. However,  this classifier is not good enough in classifying Shellcode attacks; 

it is not even recommended. This is due to the characteristics of classifiers that have 

limited performance for complex data. In addition, this model is also quite sensitive to 

the features used. Overall, the visualization of the classification data used in the test shows 
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that all three machine learning-based classifiers perform relatively well in detecting 

positive data compared to harmful data.  

 

Conclusion 

This study analyzes the classification of Shellcode with machine learning based on 

binary classification, namely KNN, Decision Tree, and Naïve Bayes. Overall, all three 

classifiers performed well in classifying Shellcode attacks. The Decision Tree classifier 

achieved the best accuracy level of 97.21%. However, the accuracy of the KNN and Naive 

Bayes methods also showed results that did not disappoint. This indicates that binary 

classification-based classification can classify Shellcode attacks taken from the 

UNSW_NB15 dataset. The results of this study are expected to provide insights into the 

use of machine learning in detecting or classifying malware or other types of cyberattacks. 

Further research can explore preprocessing and/or classification methods with multiclass 

classification to detect and classify types of cyber attacks, especially Shellcode Attacks. 

In addition, the types of attacks can be more varied and not limited to the datasets used in 

this study.  

 

Bibliography 

 

Abdillah, S. (2015). Penerapan Algoritma Decision Tree C4.5 Untuk Diagnosa Penyakit 

Stroke Dengan Klasifikasi Data Mining Pada Rumah Sakit Santra Maria Pemalang. 

Jurnal Teknik Informatika, 1–12. 

Akabane, S., Miwa, T., & Okamoto, T. (2019). An EAF guard driver to prevent shellcode 

from removing guard pages. Procedia Computer Science, 159, 2432–2439. 

https://doi.org/10.1016/j.procs.2019.09.418 

ALHusayn, S. M. S. (2020). The Buffer Overflow Attack and How to Solve Buffer 

Overflow in Recent Research. AJRSP Journal, 2(19), 1–13. 

Anley, C., Heasman, J., Linder, F., & Richarte, G. (2007). The Shellcoder’s Handbook: 

Discovering and Exploiting Security Holes, 2nd Edition. 

Ashari, M. (2020). Keamanan Informasi: Sudah Saatnya Kita Peduli. DJKN Kemenkeu. 

Fitriyyah, S. N. J., Safriadi, N., & Pratama, E. E. (2019). Analisis Sentimen Calon 

Presiden Indonesia 2019 dari Media Sosial Twitter Menggunakan Metode Naive 

Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(3), 279. 

https://doi.org/10.26418/jp.v5i3.34368 

Foster, J. C., Osipov, V., Bhalla, N., Heinen, N., & Aitel, D. (2005). Buffer overflow 

attacks: Detect, exploit, prevent. In Buffer Overflow Attacks: Detect, Exploit, 

Prevent. https://doi.org/10.1016/B978-1-932266-67-2.X5031-2 

Gouda, H. A., Ahmed, M. A., & Roushdy, M. I. (2024). Optimizing anomaly-based attack 

detection using classification machine learning. Neural Computing and 

Applications, 36(6), 3239–3257. https://doi.org/10.1007/s00521-023-09309-y 

Han, J., & Kamber, M. (1998). Data Mining: Concepts and Techniques. In Morgan 

Kaufmann Publisher. https://doi.org/10.3726/978-3-653-01927-8/2 



 

Jaka Naufal Semendawai, Deris Stiawan, Iwan Pahendra 

Indonesia Journal of Social Technology, Vol. 6, No. 2, February 2025                                    844 

 

Kanemoto, Y., Aoki, K., Iwamura, M., Miyoshi, J., Kotani, D., Takakura, H., & Okabe, 

Y. (2019). Detecting successful attacks from IDS alerts based on emulation of 

remote shellcodes. Proceedings - International Computer Software and Applications 

Conference, 2, 471–476. https://doi.org/10.1109/COMPSAC.2019.10251 

Moon, D., Lee, J. K., & Yoon, M. K. (2022). Compact feature hashing for machine 

learning-based malware detection. ICT Express, 8(1), 124–129. 

https://doi.org/10.1016/j.icte.2021.08.005 

Moustafa, N., Adi, E., Turnbull, B., & Hu, J. (2018). A New Threat Intelligence Scheme 

for Safeguarding Industry 4.0 Systems. IEEE Access, 6, 32910–32924. 

https://doi.org/10.1109/ACCESS.2018.2844794 

Niiranen, A. (2021). Machine learning-based ISA detection for short shellcodes. 

Patterson, C. M., Nurse, J. R. C., & Franqueira, V. N. L. (2023). Learning from cyber 

security incidents: A systematic review and future research agenda. Computers and 

Security, 132. https://doi.org/10.1016/j.cose.2023.103309 

Rajesh Bingu, E. al. (2023). Performance Comparison Analysis of Classification 

Methodologies for Effective Detection of Intrusions. International Journal on 

Recent and Innovation Trends in Computing and Communication, 11(9), 2860–

2879. https://doi.org/10.17762/ijritcc.v11i9.9375 

Samantaray, M., Barik, R. C., & Biswal, A. K. (2024). A comparative assessment of 

machine learning algorithms in the IoT-based network intrusion detection systems. 

Decision Analytics Journal, 11(May), 100478. 

https://doi.org/10.1016/j.dajour.2024.100478 

Sarimuddin, S., Sari, J. Y., Mail, M., Masalu, M. A., Aristika, R. S., & Nurfagra, N. 

(2020). Klasifikasi Data Aging Tunggakan Nasabah Menggunakan Metode Decision 

Tree Pada ULaMM Unit Kolaka. INFORMAL: Informatics Journal, 5(1), 26. 

https://doi.org/10.19184/isj.v5i1.16964 

Singelton, C., Wikoff, A., & McMillen, D. (2021). IBM: 2021 X-Force Threat 

Intelligence Index. Network Security, 36. https://doi.org/10.1016/s1353-

4858(21)00026-x 

Yang, G., Chen, X., Zhou, Y., & Yu, C. (2022). DualSC: Automatic Generation and 

Summarization of Shellcode via Transformer and Dual Learning. Proceedings - 

2022 IEEE International Conference on Software Analysis, Evolution and 

Reengineering, SANER 2022, 361–372. 

https://doi.org/10.1109/SANER53432.2022.00052 

 


