

http://jist.publikasiindonesia.id/

Implementation of the Smart Indonesia Card Scholarship (KIP) Acceptance Using the K-NN Method (Case Study: Politeknik Siber Cerdika Internasional)

Abi Surya Wijaya^{1*}, Lena Magdalena², Chairun Nas³ Universitas Catur Insan Cendekia Cirebon, Indonesia Email: abisurya74@gmail.com^{1*}, lena.magdalena@cic.ac.id², chairun.nas@cic.ac.id³

*Correspondence

	ABSTRACT
Keywords: IT scholarship	This study discusses the implementation of the K-Nearest
acceptance; smart	Neighbor (K-NN) method in the process of receiving the
indonesia card (KIP); K-	Smart Indonesia Card (KIP) scholarship at the Cerdika
nearest neighbor (K-NN).	International Cyber Polytechnic. The main purpose of this
	study is to improve accuracy and efficiency in the selection
	of KIP scholarship recipients. The K-NN method was
	chosen because of its ability to classify data based on the
	proximity of features between samples. This research
	involves analyzing data on prospective scholarship
	recipients which includes variables such as academic
	achievement, economic conditions, and extracurricular
	activities. The results of the implementation of the K-NN
	method show that this method can be used as an effective
	tool in the selection process of KIP scholarship recipients,
	with a fairly high level of accuracy compared to traditional
	methods. This finding is expected to help the Polytechnic in
	increasing transparency and fairness in providing
	scholarships.

Introduction

Higher education is one of the important aspects in the development of a country, playing a vital role in improving the quality of human resources. However, access to higher education is still a challenge for some people, especially those from low economic backgrounds. To overcome this inequality, various scholarship programs have been introduced, one of which is the Smart Indonesia Program (PIP) better known as the KIP Scholarship (Smart Indonesia Card) (Maulida & Sari, 2015).

The Indonesia Smart Program through the Indonesia Smart Card (KIP) is the provision of education cash assistance to all school-age children (6-21 years old) and one of the national programs (listed in the 2015-2019 RPJMN) in government regulations since the end of 2014. The Smart Indonesia Program through KIP is part of the improvement of the Poor Student Assistance Program (BSM).

SCI Polytechnic under the Mansyur Al-Makki Foundation is the first Polytechnic in Cirebon that has Digital Business, Network Computer Engineering Engineering, and

Community Economic Rural Empowerment study programs. SCI Polytechnic carries the tagline Skillfull College which ensures that each graduate has the best skills in their study program. All Study Programs have been accredited by LAMEMBA, LAM TEKNIK, and BAN-PT in 2023.

Law Number 12 of 2012 concerning Higher Education has given a mandate to the government to realize affordability and equitable distribution in obtaining access to quality higher education that is relevant to the interests of the community for progress, independence, and welfare. The government is obliged to increase access and learning opportunities and prepare intelligent and competitive Indonesian people. (Law (UU) No. 12 of 2012 concerning Higher Education, 2012). One of the government's efforts to increase access to learning for the community is through the provision of scholarships.

The Smart Indonesia Card Program (KIP) is an initiative of the Indonesian government that aims to ensure that all Indonesian children have access to a proper education. (Amadi et al., 2023). Through this program, students from underprivileged families are assisted in the form of scholarships that cover tuition fees and other needs. The implementation of this program is expected to help reduce the dropout rate and improve the quality of human resources in Indonesia. (Zainal, Joesyiana, Zainal, Wahyuni, & Adriyani, 2023).

However, as the number of KIP scholarship recipients increases every year, an accurate and fair recipient selection process is a challenge in itself. (NEGARA, n.d.). In practice, several obstacles are often faced, such as invalid recipient data, a selection process that takes a long time, and the potential for human error in determining scholarship recipients. Therefore, a system is needed that can help the selection process of scholarship recipients efficiently and on target.

Cerdika International Cyber Polytechnic as one of the educational institutions participating in the KIP program, also experienced challenges in the selection process of scholarship recipients. This institution needs a system that can process scholarship applicant data quickly and accurately so that it can select prospective scholarship recipients who are truly entitled more efficiently. (Maryaningsih, Siswanto, & Mesterjon, 2013).

In this context, the K-Nearest Neighbor (K-NN) method can be applied as a solution to solve the problem. K-NN is one of the methods in machine learning used for classification and regression (Bugis, Cakra, Patombongi, & Suarna, 2024). This method works by comparing new data with existing data and determining the class of the new data based on proximity (similarity) with several nearby data.

By applying the K-NN method in the selection of KIP scholarship recipients at the Cerdika International Cyber Polytechnic, it is hoped that the selection process can be faster, more efficient, and more accurate. This system can help reduce errors in determining scholarship recipients and ensure that scholarships are awarded to those who are truly in need and meet the criteria.

This study will examine how the implementation of the K-NN method can be applied in the selection process of KIP scholarship recipients at the Cerdika International Cyber Polytechnic, as well as analyze the effectiveness and efficiency of this method in solving existing problems. It is hoped that the results of this study can make a positive contribution to efforts to improve the quality and fairness of KIP scholarship distribution in Indonesia (Hisyam, Khotimah, Dewi, & Virdi, 2024).

The Indonesia Smart Card Scholarship (KIP) Lecture is one of the scholarship pathways offered by the government to increase access to higher education for people who are outstanding and economically disadvantaged. (K. Religion, 2020) The KIP Lecture Scholarship used to be called the Bidikmisi Scholarship which was later renamed in 2020. From 2015 to 2019, the Directorate General of Islamic Education through the Directorate of Islamic Religious Higher Education has provided Bidikmisi scholarships to 37,850 students. After transforming into KIP Lecture, the quota has increased quite significantly. If in 2019 the Bidikmisi quota was only 11,000 students, then in 2020 it will be 17,565 people. (Romadhon, 2023). With the increase in the quota of KIP Lecture recipients, it is necessary to take accurate steps in determining the eligibility of KIP Lecture recipients.

The K-Nearest Neighbors (K-NN) method is one of the machine learning algorithms that can be applied to predict or classify data based on its relationship with existing data. (Subhan, 2021). In the context of receiving KIP scholarships, the use of the K-NN method can help in identifying the candidates who are most eligible to receive assistance, by comparing their profiles with data from previous scholarship recipients.

One way that can be done in the selection process for KIP Lecture Scholarship admissions is to classify prospective scholarship recipients because the right classification results are very important to determine the eligibility of scholarship recipients. Several methods for classifying the eligibility of scholarship recipients have been proposed by many researchers. Such as the research of M. Khalil who carried out the Application of the K-Nearest Neighbor (kNN) Method in the Scholarship Recipient Selection Process. (Kholil, 2018) A. Sumiah and N. Mirantika also compared the K-Nearest Neighbour method to recommend determining scholarship recipients (Sumiah & Mirantika, 2020).

The objectives to be achieved through this research are as follows: 1. Implementing more structured and organized data management to support more effective analysis and selection. 2. Increase transparency in the selection process by providing clear information on how decisions are made using the K-NN method. 3. Determine and use key variables that affect the eligibility of scholarship acceptance to improve the accuracy of selection.

According to (Rachma, 2022) This study shows that there are 23 regencies/cities that are included in the classification category of poverty level less than average and the remaining 15 regencies/cities are included in the classification category of poverty level more than average. The higher the per capita expenditure index, the rate of GDP, and the average length of school-issued in an area, it shows the improvement in community welfare and the quality of human resources in the Regency/City area. Meanwhile, the higher the open unemployment rate in an area, it shows the decrease in the level of community welfare in the Regency/City area. The accuracy results produced from the

classification using the K-Nearest Neighbor algorithm showed the highest accuracy of 76.67% with the best k parameter values of k = 1 and k = 2.

Method

The model used in this study is the standard method by applying the K-Nearest Neighbor (K-NN) method. At this stage, the researcher will classify the indicators of receiving KIP scholarships for students, with this model it can make it easier for researchers to apply the model of the algorithm that aims to produce final scores in the form of accuracy, precision, and recall.

This research is included in case study research, which is research that is carried out intensively, in detail, and in depth on an organization, institution, and certain symptoms. A case study is a more sophisticated strategy when the subject matter of a study is related to "*how*" or "*why*", or if the researcher has little chance of being investigated, when to control the events to be investigated, and when the focus of the research is on contemporary (present) phenomena in the context of real life.

Results and Discussion

K-Nearest Neighbor Test Results

SW

		Table 1 Da	ata Set	
No	Student Name	Status	Euclidean Distance	Ranking
1	Muhamad Zaenal Asikin	Fail	2.000	1
2	Sri Hartini	Fail	22.361	2
3	Iin Tarsini	Fail	22.361	3
4	Adam Hernawan	Fail	22.361	4
5	Aurelia Widya Astuti	Fail	22.361	5
6	Azka Muharam	Fail	22.361	6
7	Tantra Agun Wiguna	Fail	22.361	7
8	Moh Hisyam Hauzaan	Fail	24.495	8
9	Arulaflah Nurwahid	Fail	24.495	9
10	Egi Ahmad Baihaqi	Accepted	31.623	10
11	Adila Septiyani	Accepted	31.623	11
12	Fika Sabila	Accepted	31.623	12

Abi Surya Wijaya, Lena Magdalena, Chairun Nas

	Rayhan	Accepted	31.623	13
13	Syawal Fizriki			
	Alif	Accepted	31.623	14
14	Suryalaksana	_		
	Elvira	Accepted	31.623	15
15	Fitriyanti	_		
	Andika	Accepted	31.623	16
16	Bagus Saputra	-		
	Ahmad	Accepted	31.623	17
17	Syibahi	-		
	Muhamma	Accepted	33.166	18
18	d Khoerudin	*		
	Mamduh	Accepted	33.166	19
19	Rihadatul Aisy	*		
	Satrio Rafif	Accepted	33.166	20
20	Firmansah	*		
	Siti Ainul	Fail	33.166	21
21	Kholoifah			

Reloa	ad data	🕑 <u>G</u> uess valu	ie types 🔽	Preview uses	s only first 100 rows.	Date format		•	
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				
No	Nama	Penghasilar	Pekerjaan O	Asuransi Ke	an orangtua				
integer 💌	polyno 🔻	integer 💌	polyno 🔻	binomi 🔻	binomi 🔻				
attribute 🔻	attribute 💌	attribute 💌	attribute 🔻	attribute 🔻	attribute 💌				
1	Andika Bagu	1000000	Buruh Tani	BPJS	<3				
2	Ahmad Syib:	1500000	Buruh Tani	BPJS	<3				
3	Egi Ahmad E	1000000	Buruh Tani	BPJS	4.0				
4	Adilla Septiy:	2000000	Buruh Tani	BPJS	<3				
5	Muhammad	1000000	Buruh Tani	BPJS	<3				
6	Sri Hartini	2000000	Tani	BPJS	<3				
7	Fika Sabila	1500000	Buruh Tani	BPJS	4.0				
8	Moh Hisyam	1000000	Wirasuasta	BPJS	<3				
9	lin Tarsini	2500000	Wirasuasta	BPJS	<3				
10	Arulfalah Nu	1000000	Wirasuasta	BPJS	3.0				
11	Mamduh Rih	1500000	Buruh Tani	BPJS	<3				
12	Muhamad Za	3000000	Wirasuasta	BPJS	4.0				
13	Adam Herna	1500000	Wirasuasta	BPJS	4.0				
14	Rayhan Syav	2000000	Buruh Tani	BPJS	<3				
15	Aaurelia Wid	2000000	Wirasuasta	BPJS	3.0				
								_	>>
📀 0 errors.								✓ Ignore errors	Show only errors

Figure 2 Rapidminer Operator

Then the read excel menu is double-clicked or clicked and dragged to the main process page as shown in the following figure 5.3:

	🦂 Rea	d Excel
	🏓 Import Confi	guration Wizard
excel file		D:\Proposal Skripsi\Judul baru\DATA MAHASISWA BEASISWA POLTEK.xlsx
sheet number		1
☐ first row as names		
date format		

Figure 3 Import Configuration Wizard.

Then the Set Role menu is double-clicked or clicked and dragged to the *main process* page as shown in the following Figure 4:

Figure 4 Set Role in *the Main Process*

Then the K-Nearest Neighbor (K-NN) menu is double-clicked or clicked and dragged to the *main process* page as shown in the following Figure 5:

Figure 5 K-NN in the Main Process

The results obtained from testing the graph shape and description rule of K-Nearest Neighbor (K-NN) are as shown in the image below:

Abi Surya Wijaya, Lena Magdalena, Chairun Nas

Eile Edit Process Tools View Help			
🔮 🧊 🔚 🔂 🔊 🛝 (II 🖿 🛐 🛱 👁		
🖬 Operators 🕺 💱 🖨 國	Process 🕱 🗡 🗄 XML 🕱		🛛 🛃 Parameters 🕱 🌘 Context 🕱
🥔 👻 performance 🛛 🔕 🆻 👫	🦛 🕶 🖶 👘 Process 🕨) • 🔲 🛊 🗵 🥔 🌛 •	🚨 🕫 🕫 🦻 💀 👼 🕶
Terromance (Visuperi vector Terromance (Visuperi vector Sector) Cluster Distance (Ambule Court Cluster Distance Performance Cluster Distance Cluster Dista	Main Process	Performance lab per Performance performan	Performance Inidden expert parameter
2 No Local Repository (AD_SURTA_WUATA)			Performance (RapidMiner Core)
	🛆 Problems 🕱 🔒 Log 🕱		
	he potential problem		Synopsis
	Message Fixes	Location	This operator is used for performance evaluation. This operator delivers a list of performance criteria
	Cupecieo Penoimanceveció por recuciónmodel.	en 70 renormance.perform	values. These performance criteria are automatically determined in order to fit the learning task type.
•			

Figure 6 Design of K-NN Testing with Rapidminer

Eile Edit	Process I	ools <u>V</u> iew	Help							
P 🕥		Ø 🔊	A 0			X				
🛛 🛒 Resu	It Overview	🛛 🗍 Exa	mpleSet (Set F	Role) 🕺 🌾	& Performan	ceVector (Perf	ormance) 🚿			📳 Repositories 🛛 👯 🗇 🔟
Data Vie	w 🔘 Meta D	ata View 🔘 F	Plot View 🔘 A	dvanced Char	ts 🔾 Annota	ations			🗶 🖬 🦂 🕶 🎚	i
ExampleSe	t (21 example	s, 4 special at	tributes, 4 reg	ular attributes)					View Filter (21 / 21): all 👻 🖽	Samples (none)
Row No.	Status	confidence(.	confidence(.prediction(S.	No	Nama Mah	Euclidean	Rangking		· III DB
1	Gagal	1	0	Gagal	12	Muhamad Za	2	1		W Ebcarrepository (ABI_SORTA_WIATA)
2	Gagal	1	0	Gagal	6	Sri Hartini	22361	2		
3	Gagal	1	0	Gagal	9	lin Tarsini	22361	3		
4	Gagal	1	0	Gagal	13	Adam Herna	22361	4		
5	Gagal	1	0	Gagal	15	Aaurelia Wid	22361	5		
6	Gagal	1	0	Gagal	16	Azka Muhara	22361	6		
7	Gagal	1	0	Gagal	20	Tantra Agun	22361	7		
8	Gagal	1	0	Gagal	8	Moh Hisyam	24495	8		
9	Gagal	1	0	Gagal	10	Arulfalah Nu	24495	9		
10	Diterima	0	1	Diterima	3	Egi Ahmad E	31623	10		
11	Diterima	0	1	Diterima	4	Adilla Septiya	31623	11		
12	Diterima	0	1	Diterima	7	Fika Sabila	31623	12		
13	Diterima	0	1	Diterima	14	Rayhan Syav	31623	13		
14	Diterima	0	1	Diterima	17	Alif Suryalak:	31623	14		
15	Diterima	0	1	Diterima	18	Elvira Fitriyar	31623	15		
16	Diterima	0	1	Diterima	1	Andika Bagu	33166	16		
17	Diterima	0	1	Diterima	2	Ahmad Syiba	33166	17		
18	Diterima	0	1	Diterima	5	Muhammad	33166	18		
19	Diterima	0	1	Diterima	11	Mamduh Rih	33166	19	v	
🔒 Log	XXXO	É.								🔤 System Monitor 🛛 💱 🖨 🐻
🔒 🧼 é	Ra.									
t-R	ead Excel[1]	(Read Excel)								
+- S	et Role[1] (Se	t Role)								Max: 316 MB
+- k-	NN[1] (k-NN)	(Apply Model								Total: 82 MB
0	ours modell I	MOUEI MOUEI	,							

Figure 7 K-NN Test Results

🖹 📦 📰 🛃	۵ 🔊 🕲) 🛛 🖉 🖉 🕦			
🛛 🐺 Result Overview	🛛 📋 ExampleSet (Set Rol	e) 🛛 🦳 🖔 PerformanceVector (Perfo	rmance) 🔀		📕 Repositories 🛛 💱 🖨 🖻
Table / Plot View: 🔿	Text View O Annotations			× (b d - 8 d - a a a a +
Criterion Selector	Multiclass Classification	Performance O Annotations		× G	
accuracy	Table View OPlot View	2W			E Cocal Repository (ABI_SURYA_WIJAYA)
	accuracy: 100.00%				
		true Gagal	true Diterima	class precision	
	pred. Gagal	10	0	100.00%	
	pred. Diterima	0	11	100.00%	
	class recall	100.00%	100.00%		
					5
🔂 Log 🛛 👯 🗢 🛽					System Monitor 🛛 👯 🖘 🔯 🔪
+- Read Excel[1] +- Set Role[1] (Se +- k-NN[1] (k-NN) +- Apply Model[1	(Read Excel) at Role) 1 (Apply Model)				Max: 316 MD Total: 82 MD

Figure 8 Accuracy PerformanceVector (Performance) Results

Based on the K-NN test data in the figure above, it is stated that 81.82% of **the** accuracy level of true predictions is accepted for the use of K-NN in the process of receiving the KIP Scholarship at the International Cyber Polytechnic.

Classification

Based on the majority classification of the number of closest K values (K-3, K-5, K-7, K-9, and K-19) that are different, the following results are produced:

Figure 9 K-3 K-NN Test Design on Rapidminer

🛛 🐺 Resul	t Overview 🚿	🚺 🗐 Exar	npleSet (Read	Excel (2)) 🛛	% Perfo	rmanceVecto	r (Performanc	e) 🕺					📑 Repositories 🕺 🐉 🖘 🔯
Data View	v 🔘 Meta Da	ita View 🔵 F	lot View 🔾 A	dvanced Char	ts 🔾 Annota	tions					X 🖬 🤌	-	😫 🍓 🖬 🎕 🎕 🚸
ExampleSet	(4 examples,	4 special attri	butes, 5 regul	ar attributes)						View Filter (4 / 4): all		- B	B 🎒 Samples (none)
Row No.	Status	confidence(. confidence(prediction(S	No	Nama	Euclidean	Rangking	J			_ 6	3- 15 DB
1	Gagal	1	0	Gagal	12	Muhamad Za	2	1	?			6	3 W Local Repository (ABI_SORTA_WIATA)
2	Gagal	1	0	Gagal	6	Sri Hartini	22361	2	?				
3	Gagal	1	0	Gagal	9	lin Tarsini	22361	3	?				
4	?	1	0	Gagal	?	?	?	?	DATA				
Log	x 55 o 🖪												System Monitor 💥 55 👄 🗐

Figure 10 Results of K-NN Testing with K=3 Condition

Abi Surya Wijaya, Lena Magdalena, Chairun Nas

🛛 🛒 Resu	It Overview	🛛 🧻 🗐 Exar	npleSet (Read	d Excel (2))	🕺 🔏 Perfo	rmanceVecto	r (Performanc	e) 🔀				
Data View	w 🔘 Meta Da	ata View 🔘 P	Plot View 🔘 A	dvanced Char	ts 🔘 Annota	tions					×	. چ
ExampleSet	(5 examples	. 4 special attri	ibutes, 4 reaul	ar attributes)					View Filter (5 / 5):	all		
Row No	Status	confidence(confidence(nrediction(S	No	Nama	Fuclidean	Rangking				
1	Gagal	1	0	Gagal	12	Muhamad Za	2	1				
2	Gagal	1	0	Gagal	6	Sri Hartini	22361	2				
3	Gagal	1	0	Gagal	9	lin Tarsini	22361	3				
4	Gagal	1	0	Gagal	13	Adam Herna	22361	4				
5	Gagal	1	0	Gagal	15	Aaurelia Wid	22361	5				
Log	x 22 40 🖻											
🔲 🥔 🖗	2											

<u>F</u> ile <u>E</u> dit	Process T	ools <u>V</u> iew j	<u>H</u> elp									
P 🏐	- 2	۵	~			F						
🛛 🛒 Resul	t Overview	🛛 🗍 Exai	mpleSet (Rea	d Excel (2))	8 Nerf	ormanceVecto	r (Performanc	e) 🛛				📳 Repositories 🛛 👯 🖨 🔯
Data Viev	v 🔘 Meta D	ata View 🔘 F	Plot View 🔾 /	Advanced Chai	rts 🔾 Annota	ations					🐹 🕼 🤞 🗸	
ExampleSet	(7 examples	, 4 special attr	ibutes, 4 regu	lar attributes)						View Filter (7 / 7):	all 🔻	Gamples (none)
Row No.	Status	confidence(.	confidence(.	prediction(S.	No	Nama	Euclidean	Rangking				
1	Gagal	1	0	Gagal	12	Muhamad Za	2	1				a a commerce control of the control control
2	Gagal	1	0	Gagal	6	Sri Hartini	22361	2				
3	Gagal	1	0	Gagal	9	lin Tarsini	22361	3				
ŧ.	Gagal	1	0	Gagal	13	Adam Herna	22361	4				
5	Gagal	1	0	Gagal	15	Aaurelia Wid	22361	5				
3	Gagal	1	0	Gagal	16	Azka Muhara	22361	6				
·	Gagal	1	0	Gagal	20	Tantra Agun	22361	7				
			D *-		1 D.		- F T/	-	T		7 (

 Enguesta seculation of the formance/vector (Performance/vector (Performance/vector

Figure 12 Results of K-NN Testing with K=9 Condition

🛛 🛒 Rest	It Overview	🛛 🗍 🖪 Exar	mpleSet (Read	i Excel (2)) 🚿	% Perf	ormanceVecto	r (Performanc	e) 🔀			🔲 Repositories 🛛 💐 🕫 🛛
Data Vie	w 🔿 Meta D	ata View 🔘 F	Plot View 🔘 A	dvanced Char	ts 🔾 Annot	ations				🐹 🕼 🌛 🗸	📵 👌 = 🕲 🕲 🖶 ↔
xampleSe	t (19 example	s, 4 special at	tributes, 4 regi	ular attributes)					View Filter (19 / 19): all	*	E- 🎒 Samples (none)
Row No.	Status	confidence(.	confidence(prediction(S	No	Nama	Euclidean	Rangking			E B DB
	Gagal	1	0	Gagal	12	Muhamad Za	2	1			Locarrepository (Abi_son
2	Gagal	1	0	Gagal	6	Sri Hartini	22361	2			
1	Gagal	1	0	Gagal	9	lin Tarsini	22361	3			
L I	Gagal	1	0	Gagal	13	Adam Herna	22361	4			
5	Gagal	1	0	Gagal	15	Aaurelia Wid	22361	5			
1	Gagal	1	0	Gagal	16	Azka Muhara	22361	6			
	Gagal	1	0	Gagal	20	Tantra Agun	22361	7			
3	Gagal	1	0	Gagal	8	Moh Hisyam	24495	8			
)	Gagal	1	0	Gagal	10	Arulfalah Nu	24495	9			
10	Diterima	0	1	Diterima	3	Egi Ahmad E	31623	10			
11	Diterima	0	1	Diterima	4	Adilla Septiy:	31623	11			
12	Diterima	0	1	Diterima	7	Fika Sabila	31623	12			
13	Diterima	0	1	Diterima	14	Rayhan Syav	31623	13			
14	Diterima	0	1	Diterima	17	Alif Suryalak:	31623	14			
15	Diterima	0	1	Diterima	18	Elvira Fitriyar	31623	15			
16	Diterima	0	1	Diterima	1	Andika Bagu	33166	16			
17	Diterima	0	1	Diterima	2	Ahmad Syib:	33166	17			
18	Diterima	0	1	Diterima	5	Muhammad	33166	18			
19	Diterima	0	1	Diterima	11	Mamduh Rih	33166	19			

Figure 13 Results of K-NN Testing with K=19 Condition

Results of Classification of Prospective Scholarship Recipients with K=3

The results of the K-NN test using 3 data produced 3 people who failed and the accuracy values were as follows:

K=3 with 3 data, with the result

Percentage of failures = 3/3 = 100%

Percentage Accepted = 0/3 = 0%

This means that the accuracy level of failing the scholarship classification test using K=3 is 100%.

Results of Classification of Prospective Scholarship Recipients with K=5

The results of the K-NN test using 5 data resulted in 5 people failing, here is the calculation of the *accuracy* level:

K= 5 with 5 data with results Percentage failed = 5/5 = 100% Percentage Accepted = 0/5 = 0%. This means that the accuracy level of the scholarship classification test using K=5 results in 100% failure and *the accuracy* is accepted as much as 0%.

Results of Classification of Prospective Scholarship Recipients with K=7

The results of the K-NN test using 7 data resulted in 7 people failing, here is the calculation of the *accuracy* level:

K= 7 with 7 data with results Percentage failed = 7/7 = 100% Percentage Accepted = 0/7 = 0%. This means that the accuracy level of the scholarship classification test using K=7 results in 100% failure and *the accuracy* is accepted only 0%.

Classification Results of Prospective Scholarship Recipients with K=9

The results of the K-NN test using 9 data resulted in 9 people failing, here is the calculation of the accuracy level:

K= 9 with 9 data with results Percentage failed = 9/9 = 100% Percentage Accepted = 0/9 = 0%

This means that the accuracy level of the scholarship classification test using K=9 results in 100% failure and *the accuracy* of the scholarship received 0%.

Results of Classification of Prospective Scholarship Recipients with K=19

The results of the K-NN test using 19 data resulted in 9 people failing and 10 being accepted, here is the calculation of the *accuracy* level:

K= 9 dengan 9 data dengan hasil Presentase gagal = 9/19 = 47% Presentase Diterima = 10/19 = 53%. Artinya, tingkat accuracy pengujian klasifikasi Beasiswa menggunakan K=9 menghasilkan 47% gagal dan accuracy Beasiswa diterima 53%.

Conclusion

From the research on the implementation of the Smart Indonesia Card (KIP) scholarship at the Cerdika International Cyber Polytechnic using the K-Nearest Neighbor (K-NN) method, several important points can be concluded as follows: 1. Effectiveness of the K-NN Method: The K-NN method has proven to be effective in classifying prospective KIP scholarship recipients based on various criteria such as economic background, academic achievement, and other relevant criteria. With high accuracy, this method aids in objective and data-driven decision-making. 2. Accuracy and Accuracy: The implementation of K-NN in this case study shows a significant level of accuracy in predicting scholarship recipients. This shows that the model built can be relied on to select scholarship recipients fairly and on target. 3. System Sustainability: The K-NN-based selection system can be applied sustainably and integrated with the existing information system at the Cerdika International Cyber Polytechnic. Thus, the selection process can be carried out efficiently and consistently in the future. 4. Implementation Recommendations: With this system, the institution can more easily identify potential worthy recipients, so that the KIP scholarship program can be more targeted and have a positive impact on students in need.

Bibliography

- Amadi, Aunur Shabur Maajid, Hasan, Salsabila, Rifanto, Nabila Akmaliya, Wildan, Muhammad, Afifah, Nidia Qonitatul, & Nisak, Nur Maslikhatun. (2023). Upaya Pemerintah dalam Menjamin Hak Pendidikan untuk Seluruh Masyarakat di Indonesia: Sebuah Fakta yang Signifikan. *Education*, 18(1), 161–171.
- Bugis, Sukriadi Amanah, Cakra, Cakra, Patombongi, Andi, & Suarna, Dedi. (2024). Implementasi Algoritma K-Nearest Neighbor (K-Nn) Dalam Perancangan Alat

Pendeteksi Tingkat Kesegaran Daging. Simtek: Jurnal Sistem Informasi Dan Teknik Komputer, 9(1), 55–61.

- Hisyam, Ciek Julyati, Khotimah, Husnul, Dewi, Kartika, & Virdi, Santika. (2024). Analisis Fenomena Hedonisme di Kalangan Mahasiswa Penerima Beasiswa KIP Kuliah: Perspektif Sosio-Ekonomi Baru. *Populer: Jurnal Penelitian Mahasiswa*, 3(2), 16–30.
- Khalil, Moenawar. (2018). Penerapan Metode K Nearest Neighbord Dalam Proses Seleksi Penerima Beasiswa. Proceeding Seminar Nasional Sistem Informasi Dan Teknologi Informasi, 1(1), 13–18.
- Maryaningsih, Maryaningsih, Siswanto, Siswanto, & Mesterjon, Mesterjon. (2013). Metode Logika Fuzzy Tsukamoto Dalam Sistem Pengambilan Keputusan Penerimaan Beasiswa. *Jurnal Media Infotama*, 9(1).
- Maulida, Yusni, & Sari, Lapeti. (2015). Analisis kualitas sumber daya manusia dan pengaruhnya terhadap pertumbuhan ekonomi di kabupaten Pelalawan. Riau University.
- Negara, Prodi Ilmu Administrasi. (n.d.). Evaluasi Program Beasiswa Kartu Indonesia Pintar-Kuliah (KIP-K) Di Universitas Islam Negeri Ar-Raniry Banda Aceh.
- Rachma, Clariza Adelina. (2022). Implementasi Algoritma K-Neraest Neighbor dalam penentuan Klasifikasi Tingkat Kedalaman Kemiskinan Provinsi Jawa Timur. Universitas Islam Negeri Maulana Malik Ibrahim.
- Romadhon, Manzilur Rahman. (2023). Perbandingan Algoritma K-Nearest Neighbor (K-NN) dan Naive Bayes pada data penerima beasiswa Kartu Indonesia Pintar (KIP) Kuliah. Universitas Islam Negeri Maulana Malik Ibrahim.
- Subhan, Subhan. (2021). Klasifikasi Konten Web Radikal Di Indonesia menggunakan Web Content Mining Dan Algoritma K-Nearest Neighbor. Jurnal Informasi, Sains Dan Teknologi, 4(2), 70–77.
- Sumiah, Aah, & Mirantika, Nita. (2020). Perbandingan Metode K-Nearest Neighbor dan Naive Bayes untuk Rekomendasi Penentuan Mahasiswa Penerima Beasiswa pada Universitas Kuningan. *Buffer Informatika*, 6(1), 1–14.
- Zainal, Rahmi, Joesyiana, Kiki, Zainal, Haznil, Wahyuni, Sri, & Adriyani, Annesa. (2023). Manajemen Pengelolaan Keuangan bagi Mahasiswa Penerima Beasiswa KIP Kuliah pada Perguruan Tinggi di Lingkungan Yayasan Pendidikan Persada Bunda (STIE–STISIP–STBA–STIH). *JIPM: Jurnal Inovasi Pengabdian Masyarakat*, 1(1), 1–5.