Maria Joy Waroi^{1*}, Mujiati², Harmonis Rante³, Bernathius Julison⁴, Duha Awaluddin⁵, Dewi Ana Rusim⁶

Universitas Cenderawasih, Indonesia

Email: mariajoywaroi@gmail.com^{1*}, muji_js@yahoo.com²,

harmonisrante72@yahoo.co.id³, bjulison@ft.uncen.ac.id⁴, duhaawaluddin@gmail.com⁵, dewianarusim@yahoo.co.id⁶

*Correspondence

ABSTRACT

Keywords:	Irrig	ation
Operations		and
Maintenance,	Dam	and
Network	Perform	ance
Index,	e-PA	AKSI
Application.		

Development of the irrigation district (DI) in Nabire district began in 1972/1973 until 2014 the government carried out 6400 ha. The purpose of this study is to evaluate the performance of the wells and networks of the irrigation areas of the caliber. The results of this study show that the performance of Nabire's wells and irrigation networks that have been awakened is still low and requires attention with an overall value of 64.74% consisting of the performance value of the physical Prasarana 24.34%, plant productivity of 9.86%, the supporting networks 3.33%, the Organization of Personnel 9.18%, Documentation 2.74% and P3A/GP3A / IP3A 5.37% This indicates that the existing operating and maintenance system is still very poorly by the Regulation of the Minister of Public Works and People's Housing No. 12/PRT/M/2015 on the Exploitation and Maintenance of Irrigation Networks as assessed using the e-PAKSI application.

Introduction

In the era of reform and regional autonomy, the problem that has been faced by the government in carrying out food security improvement programs is the damage to irrigation network infrastructure as a system that functions to supply water to agricultural land in the regions (Permadi, Anwar, & Purnomo, 2019). In general, this damage is caused by natural disasters and less optimal irrigation management of irrigation infrastructure (Wanyama et al., 2017). The lack of optimal irrigation management is in the form of weak operation and maintenance (OP) activities carried out by irrigation managers. Irrigation network OPs, especially dam OPs, are always less prioritized than rehabilitation, improvement, and new development activities (Putu Indah Dianti Putri, Suputra, & Nuraga, 2022). To support the fulfillment of the community's water needs, and to support national food security in the agricultural sector, the government has implemented various programs, including the irrigation dam construction program and its facilities. The irrigation dam construction program is intended to meet the needs of agricultural water

and water in existing communities and support the mission of strengthening rice self-sufficiency is also directed to support the government's efforts to improve farmers' welfare, create jobs, improve the quality of the environment, especially in rural areas and alleviate poverty (Hamakonda, Taus, Lea, & Ludji, 2022).

As a result, the damage to irrigation infrastructure occurs little by little without realizing it until the stage of heavy damage which causes the performance of the irrigation system to decline. The government's problems in optimizing OP activities are caused by the limited data on the condition of irrigation networks that are relevant to the current conditions provided by irrigation managers, especially irrigation networks that have a very large area. (Mulyandari, Handoyo, Mawandha, & Kesuma, 2022). Nabire Regency is one of the rice field centers and the second largest after Merauke Regency in Papua Province (Papua TPH Office, 2014; BPS Papua, 2015). From this district, West Nabire District (Kampung Bumi Raya), Makimi District (Kampung Biha), and Wanggar District (Kampung Bumi Mulia) were determined as the largest irrigated rice field centers and those that carried out regular planting for at least the last two years. The development of Irrigation Areas (DI) in Nabire Regency began with the entry of the transmigration program in Girimulyo Village in 1972/1973, transmigration in Wonorejo in 1976/1978, and transmigration in Kalibumi in 1980 with a rainfed rice field system. Meanwhile, the development of new technical irrigation began with the construction of the Kalibumi Dam which began in 1996, and the development of primary and secondary networks in Kalibumi Kanan covering an area of 4,400 ha. Then in 2014, the Ministry of Public Works and Public Housing through the Directorate General of Water Resources of the Papua River Regional Center built the Kalibumi Kiri irrigation network which will serve 2,000 ha of agricultural land. (Setyawati, Zulkarnain, & Darmaputra, 2014).

However, the performance condition of the dam and irrigation network in Kalibumi Kanan has not been able to serve all planned agricultural land. Therefore, the performance assessment of the Dam and Irrigation Network must continue to be carried out to find out the problems that cause the performance of the dam and irrigation network to decline so that maintenance steps or actions can be taken to maintain the function of the dam and irrigation network of the Kalibumi Irrigation Area. (Ramdhani, 2020).

Research related to the performance of dams and irrigation networks has been carried out by previous researchers, namely:

Nurmala, Nurdiyanto, 2018. Analysis of bending performance of Soka Hilir, Dukupuntang District, Cirebon Regency. The Soka Hilir Dam was built in 1925 and is located in Sindangjawa Village, Dukupuntang District, Cirebon Regency. At the beginning of the construction of this dam served an irrigation area of 461 Ha, but currently only 258 Ha is irrigated by the dam. This is due to the mutation of the area that causes the narrowing of the irrigation area. Factors that affect the irrigation system at the Soka Hilir Dam include increased sedimentation in the river, as well as damage to facilities and infrastructure that results in ineffective and efficient irrigation water management and a lack of balance between available discharge and required discharge. (Puro, Mulyo, & Balapadang, 2020).

The purpose of this study is to analyze the condition and function of the irrigation network, analyze the institutional personnel and human resources that manage, analyze the hydrology of the river, available discharge and demand discharge, analyze planting patterns, analyze O&P costs, and analyze the performance priorities of the Soka Hilir Dam based on the AHP (Analytic Hierarchy Process) method. (Eka Wulandari Srihadi Putri, Harisuseno, & Purwati, 2015).

The conclusion obtained from the results of the analysis is that the condition and function of the Soka Hilir Dam irrigation area network are classified as moderate, institutional personnel are only 3 people short of the required discharge, mainstay discharge can meet the demand discharge, all alternative planting patterns can be fulfilled by mainstay discharge, O&P costs have increased in 2017 and decreased in 2018, Priority determination using the AHP method which is more than 5 prioritized is Maintenance Costs for dams and irrigation areas with a weight of 56.55%.

The objectives of this research are:

- 1. Analyzing the performance of dams and irrigation networks in the Kalibumi irrigation area of Nabire Regency
- 2. Analyze the appropriate Operation and Maintenance system based on the results of the performance assessment of the dam and network carried out
- 3. Determine strategies and policies for improving the performance of the dam and network.

Method

This research is located in the Kalibumi Irrigation Area. The Kalibumi Dam is included in the area of Kampung Bumi Raya, Wanggar District, Nabire Regency. Geographically, the Kalibumi Dam is located at 1350 25 E and 3024' - 30 28' LS, which is southwest of the city of Nabire and can be reached by land by motorized vehicle for \pm 30 minutes. The irrigation network used for research is the Kalibumi Kanan Irrigation Network with a planned service area of 4,400 hectares. (Sugiyono, 2016).

The method that will be carried out in this study uses a descriptive research method with a combination of qualitative and quantitative research methods (mixed methods). The data taken are primary data and secondary data.

1. Primary data

The primary data collected is the result of measurement surveys and observations in the field which contain information on the condition of dams and irrigation networks as well as interviews with users and managers of dams and irrigation networks in Kalibumi.

2. Secondary data

Secondary data are document data related to dams and irrigation networks in Kalibumi (network scheme and building scheme) as well as other irrigation area identity data related to dam management and irrigation networks such as water availability, raw area, functional area, and potential area. Secondary data related to network schemes and

Maria Joy Waroi, Mujiati, Harmonis Rante, Bernathius Julison, Duha Awaluddin, Dewi Ana Rusim

building schemes provide an overview of the location and names of buildings and irrigation canals equipped with the nomenclature of each building and channel in the irrigation area. In this application-based research on Electronic Asset Management and Irrigation System Performance (EPAKSI), the observed data is recorded and input directly into the observation sheet that is available in the EPAKSI application.

Results and Discussion

Results of the Performance Assessment of Dams and Irrigation Networks based on EPAKSI

Based on the results of the EPAKSI-based performance analysis that adjusts to the technical instructions for irrigation asset management, the condition and function of the Kalibumi dam and irrigation network assets (can be seen in the attachment) can be described as follows.

Figure 1 Results of Kalibumi Building and Irrigation Network Inventory

Assessment of the performance of dams and irrigation networks based on the assessment of the Real Needs for Operation and Maintenance (AKNOP) and EPAKSI

The Performance Assessment and AKNOP of the Condition of the Irrigation Network in Kalibumi is a periodic activity that is carried out to inventory the condition of the irrigation infrastructure building and to analyze the performance level of the irrigation infrastructure building and calculate the cost of the real need for operation and maintenance (AKNOP) of the irrigation infrastructure building which is used as the implementation of the Operation and Maintenance of the Condition of the Irrigation Network in Kalibumi.

Based on the data obtained from previous assessments of the Kalibumi dam and irrigation network, it is known as follows:

a. Performance Assessment and AKNOP of the Condition of the Irrigation Network in Kalibumi in 2021

From the results of the assessment of the performance value of DI Kalibumi carried out by consulting services (consultants), it is known that the performance value of DI Kalibumi is 73.39%, included in the category of good performance as shown in the following table:

Table 2
Recapitulation of the 2021 Kalibumi Irrigation Network OP Performance Assessment

Komponen Indeks Kondisi OP Jaringan	Yang ada	Maks	Min	Optimum
<u>Irigasi</u>	(%)	(%)	(%)	(%)
Prasarana fisik	31,13	45	25	35
Produktivitas tanam	7,91	15	10	12,5
Sarana penunjang	9,60	10	5	7,5
Organisasi personalia	14,40	15	7,5	10
Dokumentasi	4,30	5	2,5	5
P3A	7,05	10	5	7,5
Total	74,39	100	55	77,5

b. Performance Assessment and AKNOP of the Condition of the Irrigation Network in Kalibumi in 2023 with EPAKSI

From the results of the assessment of the performance value of DI Kalibumi carried out by the EPAKSI officers of the Papua River Regional Center, it is known that the performance value of DI Kalibumi is 64.74%, including in the category of Poor Performance and Needs Attention performance as shown in the following table:

Table 3
Recapitulation of the 2023 EPAKSI Kalibumi Irrigation Network OP Performance
Assessment

	SISTEM IF	RIGASI UTAMA			SISTEM IRIGASI TERSIER		NILAI TOTAL	
No.	KOMPONEN	Indeks Kondisi Yang Ada	Bobot (80%)	No.	KOMPONEN	Indeks Kondisi Yang Ada	Bobot (20%)	MILAI IOIAL
1.	PRASARANA FISIK	30,43	24,34	1.	PRASARANA FISIK	16,06	3,21	27,55
2.	PRODUKTIVITAS TANAM	12,33	9,86	2.	PRODUKTIVITAS TANAM	9,00	1,80	11,66
3.	SARANA PENUNJANG	4,17	3,33	3.	KONDISI OP	11,50	2,30	5,63
4.	ORGANISASI PERSONALIA	11,48	9,18	4.	PETUGAS PEMBAGI AIR	10,50	2,10	11,28
5.	DOKUMENTASI	3,43	2,74	5.	DOKUMENTASI	2,53	0,51	3,25
6.	P3A/GP3A/IP3A	6,71	5,37	6.	P3A	0,00	0,00	5,37
		68,53	54,83			49,59	9,92	64,74

SWOT (Strenght Weakness Opportunity Threat) from the Kalibumi Irrigation Area

The following is the SWOT (Strength Weakness Opportunity Threat) of the Kalibumi Irrigation Area, Nabire Regency.

Strength	Weakness	Opportunity	Threat	
----------	----------	-------------	--------	--

Maria Joy Waroi, Mujiati, Harmonis Rante, Bernathius Julison, Duha Awaluddin, Dewi Ana Rusim

Availability of	Performance	Dam and network	Network
Water Supply	assessment is	damage	damage repair is
for Irrigation	carried out 1	management	still slow to be
Areas	time a year		implemented
Operation and	Coaching for the	Uses and benefits	Operations and
Maintenance	younger	of the e-Paksi	Maintenance are
Implementation	generation of	application	still
	farmers is still		unimplemented
	lacking		
Uses and	Utilization of	Increased	The loss of
Benefits of the e-	Facilities and	planting	generations of
Paksi	Infrastructure is	productivity	farmers in DI
Application	still lacking		Kalibumi
Facilities and	Farmer	Opening of new	The switch of
Infrastructure	Institutional	farmland	farmers to other
available	Development is		occupations
	still lacking		
		Support from the	
		Central and	
		Regional	
		Governments	

After doing the SWOT, the next thing to do is to recalculate, namely the score and weight of each SWOT. And get a score for strength of 3.81, a weakness value of 3.60, an opportunity value of 2.83, and the last is a threat of 3.66 So after that there will appear which handling and direction of recommendations need to be prioritized first.

	<u> </u>
STRENGTHS	OPPORTUNITIES
 Water supply for irrigation networks is still abundant The implementation of Irrigation OP continues to be carried out Repairs to damaged irrigation canals continue to be carried out The implementation of Irrigation OP depends on the Application of Irrigation 	 The results of the Epaksi Assessment are a determining indicator of the OP of the dam and the network Epaksi applications are more efficient and effective in their use There is an increase in planting productivity Allows for the opening of new farmland Receiving support from the government

• Facilities and infrastructure for irrigation areas are available

WEAKNESS THREATS Irrigation OP is still constrained Damage to irrigation networks is by social problems getting worse due to late handling It is necessary to conduct a field Operation and maintenance of survey to determine the cost of irrigation networks are still very damage minimal Assessment of the performance • Loss of generations of farmers of the dam and network is still The switch of farmers to other lacking occupations • Coaching for the younger The increasing difficulty of generation of farmers is still developing new agricultural land lacking The use of facilities and infrastructure is still lacking Institutional development of farmers' associations is still lacking

From the results of the compilation of potentials and problems above, to produce a handling strategy that can improve the performance of the Kalibumi Nabire dam and irrigation network, it is necessary to pay attention to the combination of SWOT analysis with a strategy that is adjusted based on the potential and problems as follows:

	Opportunity	Threat	
Strength	S-O: Using power to	S-T: Using Strength	
	seize	to avoid	
	opportunities	threats	
Weakness	W-O: Overcoming	W-T: Minimizing	
	weaknesses by	weaknesses	

	taking	and avoiding	
	advantage	threats	
	Opportunity	Threat	
	S-O Strategy	S-T Strategy	
Strength	• Optimally utilize	• The	
	the availability of	implementation	
	water, irrigation	of operations and	
	facilities, and	maintenance	
	infrastructure in	must be carried	
	the form of main	out more often to	
	buildings and	prevent	
	carrying canals to	infrastructure	
	irrigate	damage from	
	agricultural areas	getting worse	
	• The use of the e-	• Coaching for the	
	Paksi application	younger	
	is the main key to	generation of	
	the	farmers must be	
	implementation of	carried out more	
	operations and	massively to	
	maintenance	support the	
	• Existing irrigation	generation of	
	facilities and	farmers in the	
	infrastructure are	Kalibumi	
	used to support	irrigation area	
	increasing	• Cooperation with	
	planting	farmers in	
	productivity	maintaining	
		facilities and	
		infrastructure	
		must continue to	
		be improved	
	W-O Strategy	W-T Strategy	
Weakness	• Involving	• Operations and	
	residents in	Maintenance are	

	maintenance work	carried out by
	to avoid social	involving
	problems	security forces to
•	The	avoid social
	implementation of	problems
	the dam and •	The development
	network	of the younger
	performance	generation of
	assessment using	farmers must be
	the e-Paksi	carried out by
	application is	involving the
	carried out	younger
	together to directly	generation so that
	ascertain the	they are more
	amount of damage	motivated to
	that occurs	develop the
•	Farmer	agricultural
	development	sector
	continues to be •	Institutional
	carried out so that	development
	the increase in	continues to be
	planting	carried out by
	productivity can	involving all
	be increased	members of
•	Institutional	farmers'
	development of	associations to
	farmers'	avoid farmers
	associations	changing
	involves relevant	professions.
	stakeholders	

Strategy for Optimizing the Performance of Dams and Irrigation Networks

From the results of the SWOT analysis, strategies that can be carried out to increase park productivity in the Kalibumi Nabire irrigation area can be determined as follows:

Maria Joy Waroi, Mujiati, Harmonis Rante, Bernathius Julison, Duha Awaluddin, Dewi Ana Rusim

- 1. Continue to pay attention to the forest protection function area to maintain the sustainability of the Kalibumi River water flow
- 2. Utilizing all facilities and infrastructure that have been built to continue to increase planting productivity in the Kalibumi Nabire irrigation area
- 3. The implementation of operation and maintenance should be carried out 3 times a year to detect and accelerate repairs to damage that occurs in the carrier network infrastructure
- 4. Utilizing the e-Paksi application as a guide to carry out operations and maintenance by involving other officers to assist in the calculation of the magnitude of the damage that occurred
- 5. Coaching to institutions and farmer groups is carried out at least 2 (two) times a year to continue to embrace farmers and create a younger generation of farmers
- 6. Encourage cooperation between the River Region Center and related agencies to increase the productivity of planting and development of potential land.

Conclusion

The performance of the Kalibumi dam and irrigation network in the Kalibumi irrigation area can be seen that the performance of the dam and irrigation network in the Kalibumi Irrigation Area is in the condition of Less Performance and Needs Attention with an overall value of 64.74%. The operation and maintenance system that has been carried out is still considered insufficient based on the assessment of the e-PAKSI application and the Regulation of the Minister of Public Works and Public Housing number 12/PRT/M/2015 concerning Exploitation and Maintenance of Irrigation Networks with a value index of 55 to less than 70. For this reason, it is necessary to improve the implementation of operations and maintenance on the Kalibumi dam and irrigation network. The results of the use of the e-Paksi application have greatly helped the Papua River Regional Office in determining the performance conditions of the network dam so that it can determine the handling of the facilities and infrastructure of the Nabire irrigation area.

Strategies and policies in improving the performance of dams and networks based on the SWOT analysis carried out include:

- a) Utilizing all facilities and infrastructure that have been built to continue to increase planting productivity in the Kalibumi Nabire irrigation area
- b) The implementation of operation and maintenance should be carried out 3 times a year to detect and accelerate repairs to damage that occurs in the carrier network infrastructure
- c) Utilizing the e-Paksi application as a guide to carry out operations and maintenance by involving other officers to assist in the calculation of the magnitude of the damage that occurred

- d) Coaching to institutions and farmer groups is carried out at least 2 (two) times a year to continue to embrace farmers and create a younger generation of farmers
- e) Encourage cooperation between the River Region Center and related agencies to increase the productivity of planting and development of protected land

Maria Joy Waroi, Mujiati, Harmonis Rante, Bernathius Julison, Duha Awaluddin, Dewi Ana Rusim

Bibliography

- Hamakonda, Umbu Awang, Taus, Igniosa, Lea, Victoria Coo, & Ludji, Apriana. (2022). Penilaian Kinerja Jaringan Irigasi Pada Daerah Irigasi Batu Merah Kecamatan Kupang Timur Kabupaten Kupang. *Jurnal Teknologi Pertanian Andalas*, 26(2), 189–197.
- Mulyandari, Erni, Handoyo, Suryo, Mawandha, Hanggar Ganara, & Kesuma, Lalu Marhayani. (2022). Evaluasi Kinerja Daerah Irigasi Jejeruk Kabupaten Magetan Berdasarkan Peraturan Menteri PUPR NO 12/PRT/M/2015. Syntax Literate; Jurnal Ilmiah Indonesia, 7(11), 16351–16364.
- Permadi, Recky Dwi, Anwar, Saihul, & Purnomo, Sulistijo Edhy. (2019). Analisis Kinerja Sitem Daerahirigasi Bendung Sudikampirkabupaten Pekalongan. *Jurnal Konstruksi Dan Infrastruktur: Teknik Sipil Dan Perencanaan*, 8(3).
- Puro, Sarjono, Mulyo, Yusak Sabdo, & Balapadang, Denny. (2020). Kinerja bendung Pamarayan daerah irigasi Ciujung, kabupaten Serang. *Jurnal Rekayasa Konstruksi Mekanika Sipil*, 3(1), 1–6.
- Putri, Eka Wulandari Srihadi, Harisuseno, Donny, & Purwati, Endang. (2015). Evaluasi Kinerja Daerah Irigasi Jragung Kabupaten Demak. *Jurnal Teknik Pengairan: Journal of Water Resources Engineering*, 6(1), 66–75.
- Putri, Putu Indah Dianti, Suputra, Putu Ardi, & Nuraga, I. Ketut. (2022). Study of irrigation performance index in Saba irrigation area. *Journal of Infrastructure Planning and Engineering (JIPE)*, *I*(1), 15–26.
- Ramdhani, Moch Zulhaedi. (2020). Evaluasi Kinerja Bendung Daerah Irigasi Cikahuripan. *Jurnal Student Teknik Sipil*, 2(2), 147–151.
- Setyawati, Yuni Laras, Zulkarnain, Iskandar, & Darmaputra, I. Gde. (2014). Evaluasi Kinerja Saluran Primer Pada Jaringan Irigasi Bendung Argoguruh Wilayah Adipuro Tegineneng Lampung Tengah. *Jurnal Ilmiah Teknik Pertanian-TekTan*, 6(3), 202–214.
- Sugiyono, Sugiyono. (2016). Qualitative, Quantitative, and R&D Research Methods. *Bandung: Alfabeta Group*.
- Wanyama, Joshua, Ssegane, Herbert, Kisekka, Isaya, Komakech, Allan John, Banadda, Noble, Zziwa, Ahamada, Ebong, Tobias Oker, Mutumba, Charles, Kiggundu, Nicholas, & Kayizi, Ronald Kato. (2017). Irrigation development in Uganda: constraints, lessons learned, and future perspectives. *Journal of Irrigation and Drainage Engineering*, 143(5), 4017003.