I Kamil Elian Zhafran, Deni Saepudin
Indonesian Journal of Social Technology, Vol. 5, No. 10, October 2024 4200
Bibliography
Alzubaidi, A. M. N., & Al-Shamery, E. S. (2020). Projection pursuit Random Forest
using discriminant feature analysis model for churners prediction in the telecom
industry. International Journal of Electrical & Computer Engineering (2088-
8708), 10(2).
Chakri, P., Pratap, S., & Gouda, S. K. (2023). An exploratory data analysis approach for
analyzing financial accounting data using machine learning. Decision Analytics
Journal, 7, 100212.
Daori, H., ALHARTHI, M., ALANAZI, A., ALZAHRANI, G., ABOROKBAH, M., &
Aljehane, N. (2022). Predicting Stock Prices Using the Random Forest Classifier.
González-Núñez, E., Trejo, L. A., & Kampouridis, M. (2024). A Comparative Study for
Stock Market Forecast Based on a New Machine Learning Model. Big Data and
Cognitive Computing, 8(4), 34.
Kaczmarczyk, K., & Hernes, M. (2020). Financial decisions support using the supervised
learning method based on random forests. Procedia Computer Science, 176, 2802–
2811.
Lohrmann, C., & Luukka, P. (2019). Classification of intraday S&P500 returns with a
Random Forest. International Journal of Forecasting, 35(1), 390–407.
Madeeh, O. D., & Abdullah, H. S. (2021). An efficient prediction model based on
machine learning techniques for prediction of the stock market. Journal of Physics:
Conference Series, 1804(1), 12008.
Makariou, D., Barrieu, P., & Chen, Y. (2021). A random forest-based approach for
predicting spreads in the primary catastrophe bond market. Insurance: Mathematics
and Economics, 101, 140–162.
Ogundunmade, T. P., Adepoju, A. A., & Allam, A. (2022). Stock price forecasting:
Machine learning models with K-fold and repeated cross-validation approaches.
Mod Econ Manag, 1.
Omar, A. Bin, Huang, S., Salameh, A. A., Khurram, H., & Fareed, M. (2022). Stock
market forecasting using the random forest and deep neural network models before
and during the COVID-19 period. Frontiers in Environmental Science, 10, 917047.
Roy, S. S., Chopra, R., Lee, K. C., Spampinato, C., & Mohammadi-ivatlood, B. (2020).
Random forest, gradient boosted machines and deep neural network for stock price
forecasting: a comparative analysis on South Korean companies. International
Journal of Ad Hoc and Ubiquitous Computing, 33(1), 62–71.
Sadorsky, P. (2021). A random forests approach to predicting clean energy stock prices.
Journal of Risk and Financial Management, 14(2), 48.