I Kamil Elian Zhafran, Deni Saepudin 
Indonesian Journal of Social Technology, Vol. 5, No. 10, October 2024                               4200 
Bibliography 
Alzubaidi, A. M. N., & Al-Shamery, E. S. (2020). Projection pursuit Random Forest 
using discriminant feature analysis model for churners prediction in the telecom 
industry.  International  Journal  of  Electrical  &  Computer  Engineering  (2088-
8708), 10(2). 
Chakri, P., Pratap, S., & Gouda, S. K. (2023). An exploratory data analysis approach for 
analyzing financial  accounting data using  machine  learning.  Decision Analytics 
Journal, 7, 100212. 
Daori, H., ALHARTHI, M., ALANAZI, A., ALZAHRANI, G., ABOROKBAH, M., & 
Aljehane, N. (2022). Predicting Stock Prices Using the Random Forest Classifier. 
González-Núñez, E., Trejo, L. A., & Kampouridis, M. (2024). A Comparative Study for 
Stock Market Forecast Based on a New Machine Learning Model. Big Data and 
Cognitive Computing, 8(4), 34. 
Kaczmarczyk, K., & Hernes, M. (2020). Financial decisions support using the supervised 
learning method based on random forests. Procedia Computer Science, 176, 2802–
2811. 
Lohrmann, C., & Luukka, P. (2019). Classification of intraday S&P500 returns with a 
Random Forest. International Journal of Forecasting, 35(1), 390–407. 
Madeeh,  O.  D.,  &  Abdullah,  H.  S.  (2021).  An  efficient  prediction  model  based  on 
machine learning techniques for prediction of the stock market. Journal of Physics: 
Conference Series, 1804(1), 12008. 
Makariou, D.,  Barrieu,  P.,  &  Chen,  Y.  (2021). A  random  forest-based  approach  for 
predicting spreads in the primary catastrophe bond market. Insurance: Mathematics 
and Economics, 101, 140–162. 
Ogundunmade, T. P., Adepoju, A. A., & Allam, A. (2022). Stock price forecasting: 
Machine learning models with K-fold and repeated cross-validation approaches. 
Mod Econ Manag, 1. 
Omar, A. Bin, Huang, S., Salameh, A. A., Khurram, H., & Fareed, M. (2022). Stock 
market forecasting using the random forest and deep neural network models before 
and during the COVID-19 period. Frontiers in Environmental Science, 10, 917047. 
Roy, S. S., Chopra, R., Lee, K. C., Spampinato, C., & Mohammadi-ivatlood, B. (2020). 
Random forest, gradient boosted machines and deep neural network for stock price 
forecasting:  a  comparative  analysis  on  South  Korean  companies.  International 
Journal of Ad Hoc and Ubiquitous Computing, 33(1), 62–71. 
Sadorsky, P. (2021). A random forests approach to predicting clean energy stock prices. 
Journal of Risk and Financial Management, 14(2), 48.