Enhancing XGBoost Classification with SVM-SMOTE & EasyEnsemble for Imbalanced 
Telemedicine Sentiment Data 
Indonesian Journal of Social Technology, Vol. 5, No. 10, October 2024                               3901 
 
Bibliography 
Afifah, K., Yulita, I. N., & Sarathan, I. (2021). Sentiment analysis on telemedicine app 
reviews  using  xgboost  classifier.  2021  International  Conference  on  Artificial 
Intelligence and Big Data Analytics, 22–27. 
Capó, M., Pérez, A., & Lozano, J. A. (2020). An efficient K-means clustering algorithm 
for tall data. Data Mining and Knowledge Discovery, 34, 776–811. 
Cui, M. (2020). Introduction to the k-means clustering algorithm based on the elbow 
method. Accounting, Auditing and Finance, 1(1), 5–8. 
Fonseca,  J.,  Douzas,  G.,  &  Bacao,  F.  (2021).  Improving  imbalanced  land  cover 
classification  with  K-Means  SMOTE:  detecting  and  oversampling  distinctive 
minority spectral signatures. Information, 12(7), 266. 
Haixiang,  G.,  Yijing,  L.,  Shang,  J.,  Mingyun,  G.,  Yuanyue,  H.,  &  Bing,  G.  (2017). 
Learning from class-imbalanced data: Review of methods and applications. Expert 
Systems with Applications, 73, 220–239. 
He, S., Li, B., Peng, H., Xin, J., & Zhang, E. (2021). An effective cost-sensitive XGBoost 
method  for  malicious  URLs  detection  in  imbalanced  dataset.  IEEE  Access,  9, 
93089–93096. 
Henriques,  J.,  Caldeira,  F.,  Cruz,  T.,  &  Simões,  P.  (2020).  Combining  k-means  and 
xgboost models for anomaly detection using log datasets. Electronics, 9(7), 1164. 
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-
means  clustering  algorithms:  A  comprehensive  review,  variants  analysis,  and 
advances in the era of big data. Information Sciences, 622, 178–210. 
Jamil, M., Khairan, A., & Fuad, A. (2015). Implementasi aplikasi telemedicine berbasis 
jejaring  sosial  dengan  pemanfaatan  teknologi  cloud  computing.  JEPIN  (Jurnal 
Edukasi Dan Penelitian Informatika), 1(1). 
Qian, Y., Yao, S., Wu, T., Huang, Y., & Zeng, L. (2024). Improved Selective Deep-
Learning-Based Clustering Ensemble. Applied Sciences, 14(2), 719. 
Safitri, R., Alfira, N., Tamitiadini, D., Dewi, W. W. A., & Febriani, N. (2021). Analisis 
Sentimen: Metode Alternatif Penelitian Big Data. Universitas Brawijaya Press. 
Sagi, O., & Rokach, L. (2021). Approximating XGBoost with an interpretable decision 
tree. Information Sciences, 572, 522–542. 
Tyagi, S., & Mittal, S. (2020). Sampling approaches for imbalanced data classification 
problem in machine learning. Proceedings of ICRIC 2019: Recent Innovations in 
Computing, 209–221.