Ammar Waliyuddin Jannah, Berlian Al Kindhi
Jurnal Indonesia Sosial Teknologi, Vol. 5, No. 5, Mei 2024 2214
Bibliography
Ahmed, S. Nafees, & Prakasam, P. (2023). A systematic review on intracranial aneurysm
and hemorrhage detection using machine learning and deep learning techniques.
Progress in Biophysics and Molecular Biology.
Al Amien, Januar, Rizki, Yoze, & Nasution, Mukhlis Ali Rahman. (2022). Implementasi
Adasyn Untuk Imbalance Data Pada Dataset UNSW-NB15 Adasyn
Implementation For Data Imbalance on UNSW-NB15 Dataset. Jurnal CoSciTech
(Computer Science and Information Technology), 3(3), 242–248.
Alwarthan, Sarah, Aslam, Nida, & Khan, Irfan Ullah. (2022). An explainable model for
identifying at-risk student at higher education. IEEE Access, 10, 107649–107668.
https://doi.org/10.1109/ACCESS.2022.3211070
Arumnisaa, Ressa Isnaini, & Wijayanto, Arie Wahyu. (2023). Comparison of Ensemble
Learning Method: Random Forest, Support Vector Machine, AdaBoost for
Classification Human Development Index (HDI). Sistemasi: Jurnal Sistem
Informasi, 12(1), 206–218.
Baharuddin, Mus Mulyadi, Azis, Huzain, & Hasanuddin, Tasrif. (2019). Analisis
Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca. ILKOM
Jurnal Ilmiah, 11(3), 269–274.
Bikku, Thulasi. (2020). Multi-layered deep learning perceptron approach for health risk
prediction. Journal of Big Data, 7(1), 50.
Charles, M. Katherine, Lindegren, Mary Lou, Wester, C. William, Blevins, Meridith,
Sterling, Timothy R., Dung, Nguyen Thi, Dusingize, Jean Claude, Avit-Edi, Divine,
Durier, Nicolas, & Castelnuovo, Barbara. (2016). Implementation of tuberculosis
intensive case finding, isoniazid preventive therapy, and infection control (“ three
I’s”) and HIV-tuberculosis service integration in lower income countries. PloS One,
11(4), e0153243.
Erlin, Erlin, Desnelita, Yenny, Nasution, Nurliana, Suryati, Laili, & Zoromi, Fransiskus.
(2022). Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan
Data Tidak seimbang. MATRIK: Jurnal Manajemen, Teknik Informatika Dan
Rekayasa Komputer, 21(3), 677–690.
Gao, Cong, Killeen, Benjamin D., Hu, Yicheng, Grupp, Robert B., Taylor, Russell H.,
Armand, Mehran, & Unberath, Mathias. (2023). Synthetic data accelerates the
development of generalizable learning-based algorithms for X-ray image analysis.
Nature Machine Intelligence, 5(3), 294–308.
Huang, Guang Bin, Wang, Dian Hui, & Lan, Yuan. (2011). Extreme learning machines:
a survey. International Journal of Machine Learning and Cybernetics, 2, 107–122.
Kavvas, Erol S., Catoiu, Edward, Mih, Nathan, Yurkovich, James T., Seif, Yara, Dillon,